38 resultados para elliptic functions elliptic integrals weierstrass function hamiltonian
em Universidad Politécnica de Madrid
Resumo:
A temperature accelerated life test on commercial concentrator lattice-matched GaInP/GaInAs/Ge triple-junction solar cells has been carried out. The solar cells have been tested at three different temperatures: 119, 126 and 164 °C and the nominal photo-current condition (820 X) has been emulated by injecting current in darkness. All the solar cells have presented catastrophic failures. The failure distributions at the three tested temperatures have been fitted to an Arrhenius-Weibull model. An Arrhenius activation energy of 1.58 eV was determined from the fit. The main reliability functions and parameters (reliability function, instantaneous failure rate, mean time to failure, warranty time) of these solar cells at the nominal working temperature (80 °C) have been obtained. The warranty time obtained for a failure population of 5 % has been 69 years. Thus, a long-term warranty could be offered for these particular solar cells working at 820 X, 8 hours per day at 80 °C.
Resumo:
We consider a mathematical model related to the stationary regime of a plasma magnetically confined in a Stellarator device in the nuclear fusion. The mathematical problem may be reduced to an nonlinear elliptic inverse nonlocal two dimensional free{boundary problem. The nonlinear terms involving the unknown functions of the problem and its rearrangement. Our main goal is to determinate the existence and the estimate on the location and size of region where the solution is nonnegative almost everywhere (corresponding to the plasma region in the physical model)
Resumo:
The linear instability of the three-dimensional boundary-layer over the HIFiRE-5 flight test geometry, i.e. a rounded-tip 2:1 elliptic cone, at Mach 7, has been analyzed through spatial BiGlobal analysis, in a effort to understand transition and accurately predict local heat loads on next-generation ight vehicles. The results at an intermediate axial section of the cone, Re x = 8x10 5, show three different families of spatially amplied linear global modes, the attachment-line and cross- ow modes known from earlier analyses, and a new global mode, peaking in the vicinity of the minor axis of the cone, termed \center-line mode". We discover that a sequence of symmetric and anti-symmetric centerline modes exist and, for the basic ow at hand, are maximally amplied around F* = 130kHz. The wavenumbers and spatial distribution of amplitude functions of the centerline modes are documented
Resumo:
This paper contributes with a unified formulation that merges previ- ous analysis on the prediction of the performance ( value function ) of certain sequence of actions ( policy ) when an agent operates a Markov decision process with large state-space. When the states are represented by features and the value function is linearly approxi- mated, our analysis reveals a new relationship between two common cost functions used to obtain the optimal approximation. In addition, this analysis allows us to propose an efficient adaptive algorithm that provides an unbiased linear estimate. The performance of the pro- posed algorithm is illustrated by simulation, showing competitive results when compared with the state-of-the-art solutions.
Resumo:
Flows of relevance to new generation aerospace vehicles exist, which are weakly dependent on the streamwise direction and strongly dependent on the other two spatial directions, such as the flow around the (flattened) nose of the vehicle and the associated elliptic cone model. Exploiting these characteristics, a parabolic integration of the Navier-Stokes equations is more appropriate than solution of the full equations, resulting in the so-called Parabolic Navier-Stokes (PNS). This approach not only is the best candidate, in terms of computational efficiency and accuracy, for the computation of steady base flows with the appointed properties, but also permits performing instability analysis and laminar-turbulent transition studies a-posteriori to the base flow computation. This is to be contrasted with the alternative approach of using order-of-magnitude more expensive spatial Direct Numerical Simulations (DNS) for the description of the transition process. The PNS equations used here have been formulated for an arbitrary coordinate transformation and the spatial discretization is performed using a novel stable high-order finite-difference-based numerical scheme, ensuring the recovery of highly accurate solutions using modest computing resources. For verification purposes, the boundary layer solution around a circular cone at zero angle of attack is compared in the incompressible limit with theoretical profiles. Also, the recovered shock wave angle at supersonic conditions is compared with theoretical predictions in the same circular-base cone geometry. Finally, the entire flow field, including shock position and compressible boundary layer around a 2:1 elliptic cone is recovered at Mach numbers 3 and 4
Resumo:
We study a parabolic–elliptic chemotactic system describing the evolution of a population’s density “u” and a chemoattractant’s concentration “v”. The system considers a non-constant chemotactic sensitivity given by “χ(N−u)”, for N≥0, and a source term of logistic type “λu(1−u)”. The existence of global bounded classical solutions is proved for any χ>0, N≥0 and λ≥0. By using a comparison argument we analyze the stability of the constant steady state u=1, v=1, for a range of parameters. – For N>1 and Nλ>2χ, any positive and bounded solution converges to the steady state. – For N≤1 the steady state is locally asymptotically stable and for χN<λ, the steady state is globally asymptotically stable.
Resumo:
In this paper, a model (called the elliptic model) is proposed to estimate the number of social ties between two locations using population data in a similar manner to how transportation research deals with trips. To overcome the asymmetry of transportation models, the new model considers that the number of relationships between two locations is inversely proportional to the population in the ellipse whose foci are in these two locations. The elliptic model is evaluated by considering the anonymous communications patterns of 25 million users from three different countries, where a location has been assigned to each user based on their most used phone tower or billing zip code. With this information, spatial social networks are built at three levels of resolution: tower, city and region for each of the three countries. The elliptic model achieves a similar performance when predicting communication fluxes as transportation models do when predicting trips. This shows that human relationships are influenced at least as much by geography as is human mobility.
Resumo:
The extension of DROMO formulation to relative motion is evaluated. The orbit of the follower spacecraft can be constructed through differences on the elements defining the orbit of the leader spacecraft. Assuming that the differences are small, the problemis linearized. Typical linearized solutions to relativemotion determine the relative state of the follower spacecraft at a certain time step. Because of the form of DROMO formulation, the performance of a frozen-anomaly transformation is explored. In this case, the relative state is computed for a certain value of the anomaly, equal for leader and follower. Since the time for leader and follower do not coincide, the implicit time delay needs to be corrected to recover the physical sense of the solution. When determining the relative orbit, numerical testing shows significant error reductions compared to previous linearized solutions.
Resumo:
It is known that some orthogonal systems are mapped onto other orthogonal systems by the Fourier transform. In this article we introduce a finite class of orthogonal functions, which is the Fourier transform of Routh-Romanovski orthogonal polynomials, and obtain its orthogonality relation using Parseval identity.
Resumo:
Software evolution, and particularly its growth, has been mainly studied at the file (also sometimes referred as module) level. In this paper we propose to move from the physical towards a level that includes semantic information by using functions or methods for measuring the evolution of a software system. We point out that use of functions-based metrics has many advantages over the use of files or lines of code. We demonstrate our approach with an empirical study of two Free/Open Source projects: a community-driven project, Apache, and a company-led project, Novell Evolution. We discovered that most functions never change; when they do their number of modifications is correlated with their size, and that very few authors who modify each; finally we show that the departure of a developer from a software project slows the evolution of the functions that she authored.
Resumo:
The optimum quality that can be asymptotically achieved in the estimation of a probability p using inverse binomial sampling is addressed. A general definition of quality is used in terms of the risk associated with a loss function that satisfies certain assumptions. It is shown that the limit superior of the risk for p asymptotically small has a minimum over all (possibly randomized) estimators. This minimum is achieved by certain non-randomized estimators. The model includes commonly used quality criteria as particular cases. Applications to the non-asymptotic regime are discussed considering specific loss functions, for which minimax estimators are derived.
Resumo:
The aim of this work is to solve a question raised for average sampling in shift-invariant spaces by using the well-known matrix pencil theory. In many common situations in sampling theory, the available data are samples of some convolution operator acting on the function itself: this leads to the problem of average sampling, also known as generalized sampling. In this paper we deal with the existence of a sampling formula involving these samples and having reconstruction functions with compact support. Thus, low computational complexity is involved and truncation errors are avoided. In practice, it is accomplished by means of a FIR filter bank. An answer is given in the light of the generalized sampling theory by using the oversampling technique: more samples than strictly necessary are used. The original problem reduces to finding a polynomial left inverse of a polynomial matrix intimately related to the sampling problem which, for a suitable choice of the sampling period, becomes a matrix pencil. This matrix pencil approach allows us to obtain a practical method for computing the compactly supported reconstruction functions for the important case where the oversampling rate is minimum. Moreover, the optimality of the obtained solution is established.
Resumo:
The classical Kramer sampling theorem provides a method for obtaining orthogonal sampling formulas. In particular, when the involved kernel is analytic in the sampling parameter it can be stated in an abstract setting of reproducing kernel Hilbert spaces of entire functions which includes as a particular case the classical Shannon sampling theory. This abstract setting allows us to obtain a sort of converse result and to characterize when the sampling formula associated with an analytic Kramer kernel can be expressed as a Lagrange-type interpolation series. On the other hand, the de Branges spaces of entire functions satisfy orthogonal sampling formulas which can be written as Lagrange-type interpolation series. In this work some links between all these ideas are established.
Resumo:
This paper presents some of the results of a method to determine the main reliability functions of concentrator solar cells. High concentrator GaAs single junction solar cells have been tested in an Accelerated Life Test. The method can be directly applied to multi-junction solar cells. The main conclusions of this test carried out show that these solar cells are robust devices with a very low probability of failure caused by degradation during their operation life (more than 30 years). The evaluation of the probability operation function (i.e. the reliability function R(t)) is obtained for two nominal operation conditions of these cells, namely simulated concentration ratios of 700 and 1050 suns. Preliminary determination of the Mean Time to Failure indicates a value much higher than the intended operation life time of the concentrator cells.
Resumo:
Protein interaction networks have become a tool to study biological processes, either for predicting molecular functions or for designing proper new drugs to regulate the main biological interactions. Furthermore, such networks are known to be organized in sub-networks of proteins contributing to the same cellular function. However, the protein function prediction is not accurate and each protein has traditionally been assigned to only one function by the network formalism. By considering the network of the physical interactions between proteins of the yeast together with a manual and single functional classification scheme, we introduce a method able to reveal important information on protein function, at both micro- and macro-scale. In particular, the inspection of the properties of oscillatory dynamics on top of the protein interaction network leads to the identification of misclassification problems in protein function assignments, as well as to unveil correct identification of protein functions. We also demonstrate that our approach can give a network representation of the meta-organization of biological processes by unraveling the interactions between different functional classes