22 resultados para Silicon-on-Insulator (SOI)

em Universidad Politécnica de Madrid


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The work presented here aims to reduce the cost of multijunction solar cell technology by developing ways to manufacture them on cheap substrates such as silicon. In particular, our main objective is the growth of III-V semiconductors on silicon substrates for photovoltaic applications. The goal is to create a GaAsP/Si virtual substrates onto which other III-V cells could be integrated with an interesting efficiency potential. This technology involves several challenges due to the difficulty of growing III-V materials on silicon. In this paper, our first work done aimed at developing such structure is presented. It was focused on the development of phosphorus diffusion models on silicon and on the preparation of an optimal silicon surface to grow on it III-V materials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Founded by Antonio Luque in 1979 Personnel: Personnel: 6464 full full-time time staff (19 professors staff (19 professors, 44 PhD PhD researchers 28 PhD students 13 researchers, 28 PhD students, 13 administrative and maintenance staff), 19 “part time” (11 “external PhD students”, 8 master students) Objective: Objective: Contribute to the deployment of Photovoltaic Solar Electricity through R&D& Contribute to the deployment of Photovoltaic Solar Electricity through R&D&i

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel HCPV nonimaging concentrator concept with high concentration (>500×) is presented. It uses the combination of a commercial concentration GaInP∕GaInAs∕Ge 3J cell and a concentration Back‐Point‐Contact (BPC) concentration silicon cell for efficient spectral utilization, and external confinement techniques for recovering the 3J cell′s reflection. The primary optical element (POE) is a flat Fresnel lens and the secondary optical element (SOE) is a free‐form RXI‐type concentrator with a band‐pass filter embedded it, both POE and SOE performing Köhler integration to produce light homogenization. The band‐pass filter sends the IR photons in the 900–1200 nm band to the silicon cell. Computer simulations predict that four‐terminal terminal designs could achieve ∼46% added cell efficiencies using commercial 39% 3J and 26% Si cells. A first proof‐of concept receiver prototype has been manufactured using a simpler optical architecture (with a lower concentration, ∼ 100× and lower simulated added efficiency), and experimental measurements have shown up to 39.8% 4J receiver efficiency using a 3J with peak efficiency of 36.9%

Relevância:

40.00% 40.00%

Publicador:

Resumo:

InN layers: MBE growth issues Growth of InN-based thin films: InN/InGaN QWS on GaN Growth of InN-based nanorods ● Self Self-assembled assembled InN InN nanorods nanorods onon different different substrates substrates ● Self-assembled InGaN nanorods ● Broad- Broad-emission emission nanostructures ● Self Self--assembled assembled InGaN InGaN--based based Qdisks Qdisks ● Selective area growth (SAG) of InGaN Qdisks

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the Laser-Fired Contact (LFC) process, a laser beam fires a metallic layer through a dielectric passivating layer into the silicon wafer to form an electrical contact with the silicon bulk [1]. This laser technique is an interesting alternative for the fabrication of both laboratory and industrial scale high efficiency passivated emitter and rear cell (PERC). One of the principal characteristics of this promising technique is the capability to reduce the recombination losses at the rear surface in crystalline silicon solar cells. Therefore, it is crucial to optimize LFC because this process is one of the most promising concepts to produce rear side point contacts at process speeds compatible with the final industrial application. In that sense, this work investigates the optimization of LFC processing to improve the back contact in silicon solar cells using fully commercial solid state lasers with pulse width in the ns range, thus studying the influence of the wavelength using the three first harmonics (corresponding to wavelengths of 1064 nm, 532 nm and 355 nm). Previous studies of our group focused their attention in other processing parameters as laser fluence, number of pulses, passivating material [2, 3] thickness of the rear metallic contact [4], etc. In addition, the present work completes the parametric optimization by assessing the influence of the laser wavelength on the contact property. In particular we report results on the morphology and electrical behaviour of samples specifically designed to assess the quality of the process. In order to study the influence of the laser wavelength on the contact feature we used as figure of merit the specific contact resistance. In all processes the best results have been obtained using green (532 nm) and UV (355 nm), with excellent values for this magnitude far below 1 mΩcm2.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

With the final goal of integrating III-V materials to silicon for tandem solar cells, the influence of the metal-organic vapor phase epitaxy (MOVPE) environment on the minority carrier properties of silicon wafers has been evaluated. These properties will essentially determine the photovoltaic performance of the bottom cell in a III-V-on-Si tandem solar cell device. A comparison of the base minority carrier lifetimes obtained for different thermal processes carried out in a MOVPE reactor on Czochralski silicon wafers has been carried out. The effect of the formation of the emitter by phosphorus diffusion has also been evaluated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dual-junction solar cells formed by a GaAsP or GaInP top cell and a silicon bottom cell seem to be attractive candidates to materialize the long sought-for integration of III?V materials on silicon for photovoltaic applications. When manufacturing a multi-junction solar cell on silicon, one of the first processes to be addressed is the development of the bottom subcell and, in particular, the formation of its emitter. In this study, we analyze, both experimentally and by simulations, the formation of the emitter as a result of phosphorus diffusion that takes place during the first stages of the epitaxial growth of the solar cell. Different conditions for the Metal-Organic Vapor Phase Epitaxy (MOVPE) process have been evaluated to understand the impact of each parameter, namely, temperature, phosphine partial pressure, time exposure and memory effects in the final diffusion profiles obtained. A model based on SSupremIV process simulator has been developed and validated against experimental profiles measured by ECV and SIMS to calculate P diffusion profiles in silicon formed in a MOVPE environment taking in consideration all these factors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The polysilicon market is experiencing tremendous changes due to the strong demand from Photovoltaics (PV), which has by far surpassed the demand from Microelectronics. The need of solar silicon has induced a large increase in capacity, which has now given a scenario of oversupply, reducing the polysilicon price to levels that put a strong pressure on the cost structure of the producers. The paper reports on the R&D efforts carried out in the field of solar silicon purification via the chlorosilane route by a private-public consortium that is building a pilot plant of 50-100 tonnes/year, that will synthesize trichlorosilane, purify it and deposit ultrapure silicon in an industrial-size Siemens type reactor. It has also capabilities for ingot growth and material characterization. A couple of examples of the progress so far are given, the first one related to the recycling scheme of chlorinated compounds, and the second to the minimization of radiation losses in the CVD deposition process, which account for a relevant part of the total energy consumption. In summary, the paper gives details on the technology being developed in our pilot plant, which offers a unique platform for field-testing of innovative approaches that can lead to a cost reduction of solar silicon produced via the chlorosilane route.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dual-junction solar cells formed by a GaAsP or GaInP top cell and a silicon (Si) bottom cell seem to be attractive candidates to materialize the long sought-for integration of III-V materials on Si for photovoltaic (PV) applications. Such integration would offer a cost breakthrough for PV technology, unifying the low cost of Si and the efficiency potential of III-V multijunction solar cells. The optimization of the Si solar cells properties in flat-plate PV technology is well-known; nevertheless, it has been proven that the behavior of Si substrates is different when processed in an MOVPE reactor In this study, we analyze several factors influencing the bottom subcell performance, namely, 1) the emitter formation as a result of phosphorus diffusion; 2) the passivation quality provided by the GaP nucleation layer; and 3) the process impact on the bottom subcell PV properties.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Polysilicon cost impacts significantly on the photovoltaics (PV) cost and on the energy payback time. Nowadays, the besetting production process is the so called Siemens process, polysilicon deposition by chemical vapor deposition (CVD) from Trichlorosilane. Polysilicon purification level for PV is to a certain extent less demanding that for microelectronics. At the Instituto de Energía Solar (IES) research on this subject is performed through a Siemens process-type laboratory reactor. Through the laboratory CVD prototype at the IES laboratories, valuable information about the phenomena involved in the polysilicon deposition process and the operating conditions is obtained. Polysilicon deposition by CVD is a complex process due to the big number of parameters involved. A study on the influence of temperature and inlet gas mixture composition on the polysilicon deposition growth rate, based on experimental experience, is shown. Moreover, CVD process accounts for the largest contribution to the energy consumption of the polysilicon production. In addition, radiation phenomenon is the major responsible for low energetic efficiency of the whole process. This work presents a model of radiation heat loss, and the theoretical calculations are confirmed experimentally through a prototype reactor at our disposal, yielding a valuable know-how for energy consumption reduction at industrial Siemens reactors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The implementation of photovoltaic solar energy based on silicon is being slowed down by the shortage of raw material. In this context, the use of thinner wafers arises as a solution reducing the amount of silicon in the photovoltaic modules. On the other hand, the manufacturing process with thinner wafers can become complicated with traditional tools. The high number of damaged wafers reduces the global yield. It’s known that edge and surface cracks and defects determine the mechanical strength of wafers. There are several ways of removing these defects e. g. subjecting wafers to a mechanical polishing or to a chemical etching. This paper shows a comparison between different surface treatments and their influence on the mechanical strength.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The era of the seed-cast grown monocrystalline-based silicon ingots is coming. Mono-like, pseudomono or quasimono wafers are product labels that can be nowadays found in the market, as a critical innovation for the photovoltaic industry. They integrate some of the most favorable features of the conventional silicon substrates for solar cells, so far, such as the high solar cell efficiency offered by the monocrystalline Czochralski-Si (Cz-Si) wafers and the lower cost, high productivity and full square-shape that characterize the well-known multicrystalline casting growth method. Nevertheless, this innovative crystal growth approach still faces a number of mass scale problems that need to be resolved, in order to gain a deep, 100% reliable and worldwide market: (i) extended defects formation during the growth process; (ii) optimization of the seed recycling; and (iii) parts of the ingots giving low solar cells performance, which directly affect the production costs and yield of this approach. Therefore, this paper presents a series of casting crystal growth experiments and characterization studies from ingots, wafers and cells manufactured in an industrial approach, showing the main sources of crystal defect formation, impurity enrichment and potential consequences at solar cell level. The previously mentioned technological drawbacks are directly addressed, proposing industrial actions to pave the way of this new wafer technology to high efficiency solar cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A phosphorus diffusion gettering model is used to examine the efficacy of a standard gettering process on interstitial and precipitated iron in multicrystalline silicon. The model predicts a large concentration of precipitated iron remaining after standard gettering for most as-grown iron distributions. Although changes in the precipitated iron distribution are predicted to be small, the simulated post-processing interstitial iron concentration is predicted to depend strongly on the as-grown distribution of precipitates, indicating that precipitates must be considered as internal sources of contamination during processing. To inform and validate the model, the iron distributions before and after a standard phosphorus diffusion step are studied in samples from the bottom, middle, and top of an intentionally Fe-contaminated laboratory ingot. A census of iron-silicide precipitates taken by synchrotron-based X-ray fluorescence microscopy confirms the presence of a high density of iron-silicide precipitates both before and after phosphorus diffusion. A comparable precipitated iron distribution was measured in a sister wafer after hydrogenation during a firing step. The similar distributions of precipitated iron seen after each step in the solar cell process confirm that the effect of standard gettering on precipitated iron is strongly limited as predicted by simulation. Good agreement between the experimental and simulated data supports the hypothesis that gettering kinetics is governed by not only the total iron concentration but also by the distribution of precipitated iron. Finally, future directions based on the modeling are suggested for the improvement of effective minority carrier lifetime in multicrystalline silicon solar cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Intermediate band formation on silicon layers for solar cell applications was achieved by titanium implantation and laser annealing. A two-layer heterogeneous system, formed by the implanted layer and by the un-implanted substrate, was formed. In this work, we present for the first time electrical characterization results which show that recombination is suppressed when the Ti concentration is high enough to overcome the Mott limit, in agreement with the intermediate band theory. Clear differences have been observed between samples implanted with doses under or over the Mott limit. Samples implanted under the Mott limit have capacitance values much lower than the un-implanted ones as corresponds to a highly doped semiconductor Schottky junction. However, when the Mott limit is surpassed, the samples have much higher capacitance, revealing that the intermediate band is formed. The capacitance increasing is due to the big amount of charge trapped at the intermediate band, even at low temperatures. Ti deep levels have been measured by admittance spectroscopy. These deep levels are located at energies which vary from 0.20 to 0.28?eV below the conduction band for implantation doses in the range 1013-1014 at./cm2. For doses over the Mott limit, the implanted atoms become nonrecombinant. Capacitance voltage transient technique measurements prove that the fabricated devices consist of two-layers, in which the implanted layer and the substrate behave as an n+/n junction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dual-junction solar cells formed by a GaAsP or GaInP top cell and a silicon bottom cell seem to be attractive candidates to materialize the long sought-for integration of III-V materials on silicon for photovoltaic applications. One of the first issues to be considered in the development of this structure will be the strategy to create the silicon emitter of the bottom subcell. In this study, we explore the possibility of forming the silicon emitter by phosphorus diffusion (i.e. exposing the wafer to PH3 in a MOVPE reactor) and still obtain good surface morphologies to achieve a successful III-V heteroepitaxy as occurs in conventional III-V on germanium solar cell technology. Consequently, we explore the parameter space (PH3 partial pressure, time and temperature) that is needed to create optimized emitter designs and assess the impact of such treatments on surface morphology using atomic force microscopy. Although a strong degradation of surface morphology caused by prolonged exposure of silicon to PH3 is corroborated, it is also shown that subsequent anneals under H-2 can recover silicon surface morphology and minimize its RMS roughness and the presence of pits and spikes.