27 resultados para Sampling Theorem
em Universidad Politécnica de Madrid
Resumo:
The classical Kramer sampling theorem provides a method for obtaining orthogonal sampling formulas. Besides, it has been the cornerstone for a significant mathematical literature on the topic of sampling theorems associated with differential and difference problems. In this work we provide, in an unified way, new and old generalizations of this result corresponding to various different settings; all these generalizations are illustrated with examples. All the different situations along the paper share a basic approach: the functions to be sampled are obtaining by duality in a separable Hilbert space H through an H -valued kernel K defined on an appropriate domain.
Resumo:
The classical Kramer sampling theorem, which provides a method for obtaining orthogonal sampling formulas, can be formulated in a more general nonorthogonal setting. In this setting, a challenging problem is to characterize the situations when the obtained nonorthogonal sampling formulas can be expressed as Lagrange-type interpolation series. In this article a necessary and sufficient condition is given in terms of the zero removing property. Roughly speaking, this property concerns the stability of the sampled functions on removing a finite number of their zeros.
Resumo:
The classical Kramer sampling theorem provides a method for obtaining orthogonal sampling formulas. In particular, when the involved kernel is analytic in the sampling parameter it can be stated in an abstract setting of reproducing kernel Hilbert spaces of entire functions which includes as a particular case the classical Shannon sampling theory. This abstract setting allows us to obtain a sort of converse result and to characterize when the sampling formula associated with an analytic Kramer kernel can be expressed as a Lagrange-type interpolation series. On the other hand, the de Branges spaces of entire functions satisfy orthogonal sampling formulas which can be written as Lagrange-type interpolation series. In this work some links between all these ideas are established.
Resumo:
The optimum quality that can be asymptotically achieved in the estimation of a probability p using inverse binomial sampling is addressed. A general definition of quality is used in terms of the risk associated with a loss function that satisfies certain assumptions. It is shown that the limit superior of the risk for p asymptotically small has a minimum over all (possibly randomized) estimators. This minimum is achieved by certain non-randomized estimators. The model includes commonly used quality criteria as particular cases. Applications to the non-asymptotic regime are discussed considering specific loss functions, for which minimax estimators are derived.
Resumo:
This article presents a probabilistic method for vehicle detection and tracking through the analysis of monocular images obtained from a vehicle-mounted camera. The method is designed to address the main shortcomings of traditional particle filtering approaches, namely Bayesian methods based on importance sampling, for use in traffic environments. These methods do not scale well when the dimensionality of the feature space grows, which creates significant limitations when tracking multiple objects. Alternatively, the proposed method is based on a Markov chain Monte Carlo (MCMC) approach, which allows efficient sampling of the feature space. The method involves important contributions in both the motion and the observation models of the tracker. Indeed, as opposed to particle filter-based tracking methods in the literature, which typically resort to observation models based on appearance or template matching, in this study a likelihood model that combines appearance analysis with information from motion parallax is introduced. Regarding the motion model, a new interaction treatment is defined based on Markov random fields (MRF) that allows for the handling of possible inter-dependencies in vehicle trajectories. As for vehicle detection, the method relies on a supervised classification stage using support vector machines (SVM). The contribution in this field is twofold. First, a new descriptor based on the analysis of gradient orientations in concentric rectangles is dened. This descriptor involves a much smaller feature space compared to traditional descriptors, which are too costly for real-time applications. Second, a new vehicle image database is generated to train the SVM and made public. The proposed vehicle detection and tracking method is proven to outperform existing methods and to successfully handle challenging situations in the test sequences.
Resumo:
The aim of this work is to solve a question raised for average sampling in shift-invariant spaces by using the well-known matrix pencil theory. In many common situations in sampling theory, the available data are samples of some convolution operator acting on the function itself: this leads to the problem of average sampling, also known as generalized sampling. In this paper we deal with the existence of a sampling formula involving these samples and having reconstruction functions with compact support. Thus, low computational complexity is involved and truncation errors are avoided. In practice, it is accomplished by means of a FIR filter bank. An answer is given in the light of the generalized sampling theory by using the oversampling technique: more samples than strictly necessary are used. The original problem reduces to finding a polynomial left inverse of a polynomial matrix intimately related to the sampling problem which, for a suitable choice of the sampling period, becomes a matrix pencil. This matrix pencil approach allows us to obtain a practical method for computing the compactly supported reconstruction functions for the important case where the oversampling rate is minimum. Moreover, the optimality of the obtained solution is established.
Resumo:
Fundación Ciudad de la Energía (CIUDEN) is carrying out a project of geological storage of CO2, where CO2 injection tests are planned in saline aquifers at a depth of 1500 m for scientific objectives and project demonstration. Before any CO2 is stored, it is necessary to determine the baseline flux of CO2 in order to detect potential leakage during injection and post-injection monitoring. In November 2009 diffuse flux measurements of CO2 using an accumulationchamber were made in the area selected by CIUDEN for geological storage, located in Hontomin province of Burgos (Spain). This paper presents the tests carried out in order to establish the optimum sampling methodology and the geostatistical analyses performed to determine the range, with which future field campaigns will be planned.
Resumo:
Multi-camera 3D tracking systems with overlapping cameras represent a powerful mean for scene analysis, as they potentially allow greater robustness than monocular systems and provide useful 3D information about object location and movement. However, their performance relies on accurately calibrated camera networks, which is not a realistic assumption in real surveillance environments. Here, we introduce a multi-camera system for tracking the 3D position of a varying number of objects and simultaneously refin-ing the calibration of the network of overlapping cameras. Therefore, we introduce a Bayesian framework that combines Particle Filtering for tracking with recursive Bayesian estimation methods by means of adapted transdimensional MCMC sampling. Addi-tionally, the system has been designed to work on simple motion detection masks, making it suitable for camera networks with low transmission capabilities. Tests show that our approach allows a successful performance even when starting from clearly inaccurate camera calibrations, which would ruin conventional approaches.
Resumo:
La evaluación de la seguridad de estructuras antiguas de fábrica es un problema abierto.El material es heterogéneo y anisótropo, el estado previo de tensiones difícil de conocer y las condiciones de contorno inciertas. A comienzos de los años 50 se demostró que el análisis límite era aplicable a este tipo de estructuras, considerándose desde entonces como una herramienta adecuada. En los casos en los que no se produce deslizamiento la aplicación de los teoremas del análisis límite estándar constituye una herramienta formidable por su simplicidad y robustez. No es necesario conocer el estado real de tensiones. Basta con encontrar cualquier solución de equilibrio, y que satisfaga las condiciones de límite del material, en la seguridad de que su carga será igual o inferior a la carga real de inicio de colapso. Además esta carga de inicio de colapso es única (teorema de la unicidad) y se puede obtener como el óptimo de uno cualquiera entre un par de programas matemáticos convexos duales. Sin embargo, cuando puedan existir mecanismos de inicio de colapso que impliquen deslizamientos, cualquier solución debe satisfacer tanto las restricciones estáticas como las cinemáticas, así como un tipo especial de restricciones disyuntivas que ligan las anteriores y que pueden plantearse como de complementariedad. En este último caso no está asegurada la existencia de una solución única, por lo que es necesaria la búsqueda de otros métodos para tratar la incertidumbre asociada a su multiplicidad. En los últimos años, la investigación se ha centrado en la búsqueda de un mínimo absoluto por debajo del cual el colapso sea imposible. Este método es fácil de plantear desde el punto de vista matemático, pero intratable computacionalmente, debido a las restricciones de complementariedad 0 y z 0 que no son ni convexas ni suaves. El problema de decisión resultante es de complejidad computacional No determinista Polinomial (NP)- completo y el problema de optimización global NP-difícil. A pesar de ello, obtener una solución (sin garantía de exito) es un problema asequible. La presente tesis propone resolver el problema mediante Programación Lineal Secuencial, aprovechando las especiales características de las restricciones de complementariedad, que escritas en forma bilineal son del tipo y z = 0; y 0; z 0 , y aprovechando que el error de complementariedad (en forma bilineal) es una función de penalización exacta. Pero cuando se trata de encontrar la peor solución, el problema de optimización global equivalente es intratable (NP-difícil). Además, en tanto no se demuestre la existencia de un principio de máximo o mínimo, existe la duda de que el esfuerzo empleado en aproximar este mínimo esté justificado. En el capítulo 5, se propone hallar la distribución de frecuencias del factor de carga, para todas las soluciones de inicio de colapso posibles, sobre un sencillo ejemplo. Para ello, se realiza un muestreo de soluciones mediante el método de Monte Carlo, utilizando como contraste un método exacto de computación de politopos. El objetivo final es plantear hasta que punto está justificada la busqueda del mínimo absoluto y proponer un método alternativo de evaluación de la seguridad basado en probabilidades. Las distribuciones de frecuencias, de los factores de carga correspondientes a las soluciones de inicio de colapso obtenidas para el caso estudiado, muestran que tanto el valor máximo como el mínimo de los factores de carga son muy infrecuentes, y tanto más, cuanto más perfecto y contínuo es el contacto. Los resultados obtenidos confirman el interés de desarrollar nuevos métodos probabilistas. En el capítulo 6, se propone un método de este tipo basado en la obtención de múltiples soluciones, desde puntos de partida aleatorios y calificando los resultados mediante la Estadística de Orden. El propósito es determinar la probabilidad de inicio de colapso para cada solución.El método se aplica (de acuerdo a la reducción de expectativas propuesta por la Optimización Ordinal) para obtener una solución que se encuentre en un porcentaje determinado de las peores. Finalmente, en el capítulo 7, se proponen métodos híbridos, incorporando metaheurísticas, para los casos en que la búsqueda del mínimo global esté justificada. Abstract Safety assessment of the historic masonry structures is an open problem. The material is heterogeneous and anisotropic, the previous state of stress is hard to know and the boundary conditions are uncertain. In the early 50's it was proven that limit analysis was applicable to this kind of structures, being considered a suitable tool since then. In cases where no slip occurs, the application of the standard limit analysis theorems constitutes an excellent tool due to its simplicity and robustness. It is enough find any equilibrium solution which satisfy the limit constraints of the material. As we are certain that this load will be equal to or less than the actual load of the onset of collapse, it is not necessary to know the actual stresses state. Furthermore this load for the onset of collapse is unique (uniqueness theorem), and it can be obtained as the optimal from any of two mathematical convex duals programs However, if the mechanisms of the onset of collapse involve sliding, any solution must satisfy both static and kinematic constraints, and also a special kind of disjunctive constraints linking the previous ones, which can be formulated as complementarity constraints. In the latter case, it is not guaranted the existence of a single solution, so it is necessary to look for other ways to treat the uncertainty associated with its multiplicity. In recent years, research has been focused on finding an absolute minimum below which collapse is impossible. This method is easy to set from a mathematical point of view, but computationally intractable. This is due to the complementarity constraints 0 y z 0 , which are neither convex nor smooth. The computational complexity of the resulting decision problem is "Not-deterministic Polynomialcomplete" (NP-complete), and the corresponding global optimization problem is NP-hard. However, obtaining a solution (success is not guaranteed) is an affordable problem. This thesis proposes solve that problem through Successive Linear Programming: taking advantage of the special characteristics of complementarity constraints, which written in bilinear form are y z = 0; y 0; z 0 ; and taking advantage of the fact that the complementarity error (bilinear form) is an exact penalty function. But when it comes to finding the worst solution, the (equivalent) global optimization problem is intractable (NP-hard). Furthermore, until a minimum or maximum principle is not demonstrated, it is questionable that the effort expended in approximating this minimum is justified. XIV In chapter 5, it is proposed find the frequency distribution of the load factor, for all possible solutions of the onset of collapse, on a simple example. For this purpose, a Monte Carlo sampling of solutions is performed using a contrast method "exact computation of polytopes". The ultimate goal is to determine to which extent the search of the global minimum is justified, and to propose an alternative approach to safety assessment based on probabilities. The frequency distributions for the case study show that both the maximum and the minimum load factors are very infrequent, especially when the contact gets more perfect and more continuous. The results indicates the interest of developing new probabilistic methods. In Chapter 6, is proposed a method based on multiple solutions obtained from random starting points, and qualifying the results through Order Statistics. The purpose is to determine the probability for each solution of the onset of collapse. The method is applied (according to expectations reduction given by the Ordinal Optimization) to obtain a solution that is in a certain percentage of the worst. Finally, in Chapter 7, hybrid methods incorporating metaheuristics are proposed for cases in which the search for the global minimum is justified.
Resumo:
Sequential estimation of the success probability p in inverse binomial sampling is considered in this paper. For any estimator pˆ , its quality is measured by the risk associated with normalized loss functions of linear-linear or inverse-linear form. These functions are possibly asymmetric, with arbitrary slope parameters a and b for pˆ
p , respectively. Interest in these functions is motivated by their significance and potential uses, which are briefly discussed. Estimators are given for which the risk has an asymptotic value as p→0, and which guarantee that, for any p∈(0,1), the risk is lower than its asymptotic value. This allows selecting the required number of successes, r, to meet a prescribed quality irrespective of the unknown p. In addition, the proposed estimators are shown to be approximately minimax when a/b does not deviate too much from 1, and asymptotically minimax as r→∞ when a=b.
Resumo:
We consider the problem of developing efficient sampling schemes for multiband sparse signals. Previous results on multicoset sampling implementations that lead to universal sampling patterns (which guarantee perfect reconstruction), are based on a set of appropriate interleaved analog to digital converters, all of them operating at the same sampling frequency. In this paper we propose an alternative multirate synchronous implementation of multicoset codes, that is, all the analog to digital converters in the sampling scheme operate at different sampling frequencies, without need of introducing any delay. The interleaving is achieved through the usage of different rates, whose sum is significantly lower than the Nyquist rate of the multiband signal. To obtain universal patterns the sampling matrix is formulated and analyzed. Appropriate choices of the parameters, that is the block length and the sampling rates, are also proposed.
Resumo:
Many problems in digital communications involve wideband radio signals. As the most recent example, the impressive advances in Cognitive Radio systems make even more necessary the development of sampling schemes for wideband radio signals with spectral holes. This is equivalent to considering a sparse multiband signal in the framework of Compressive Sampling theory. Starting from previous results on multicoset sampling and recent advances in compressive sampling, we analyze the matrix involved in the corresponding reconstruction equation and define a new method for the design of universal multicoset codes, that is, codes guaranteeing perfect reconstruction of the sparse multiband signal.
Resumo:
Dynamic thermal management techniques require a collection of on-chip thermal sensors that imply a significant area and power overhead. Finding the optimum number of temperature monitors and their location on the chip surface to optimize accuracy is an NP-hard problem. In this work we improve the modeling of the problem by including area, power and networking constraints along with the consideration of three inaccuracy terms: spatial errors, sampling rate errors and monitor-inherent errors. The problem is solved by the simulated annealing algorithm. We apply the algorithm to a test case employing three different types of monitors to highlight the importance of the different metrics. Finally we present a case study of the Alpha 21364 processor under two different constraint scenarios.
Resumo:
We propose distributed algorithms for sampling networks based on a new class of random walks that we call Centrifugal Random Walks (CRW). A CRW is a random walk that starts at a source and always moves away from it. We propose CRW algorithms for connected networks with arbitrary probability distributions, and for grids and networks with regular concentric connectivity with distance based distributions. All CRW sampling algorithms select a node with the exact probability distribution, do not need warm-up, and end in a number of hops bounded by the network diameter.
Resumo:
Sampling a network with a given probability distribution has been identified as a useful operation. In this paper we propose distributed algorithms for sampling networks, so that nodes are selected by a special node, called the source, with a given probability distribution. All these algorithms are based on a new class of random walks, that we call Random Centrifugal Walks (RCW). A RCW is a random walk that starts at the source and always moves away from it. Firstly, an algorithm to sample any connected network using RCW is proposed. The algorithm assumes that each node has a weight, so that the sampling process must select a node with a probability proportional to its weight. This algorithm requires a preprocessing phase before the sampling of nodes. In particular, a minimum diameter spanning tree (MDST) is created in the network, and then nodes weights are efficiently aggregated using the tree. The good news are that the preprocessing is done only once, regardless of the number of sources and the number of samples taken from the network. After that, every sample is done with a RCW whose length is bounded by the network diameter. Secondly, RCW algorithms that do not require preprocessing are proposed for grids and networks with regular concentric connectivity, for the case when the probability of selecting a node is a function of its distance to the source. The key features of the RCW algorithms (unlike previous Markovian approaches) are that (1) they do not need to warm-up (stabilize), (2) the sampling always finishes in a number of hops bounded by the network diameter, and (3) it selects a node with the exact probability distribution.