The Kramer sampling theorem revisited


Autoria(s): García García, Antonio; Hernandez Medina, Miguel Angel; Muñoz Bouto, María José
Data(s)

01/12/2013

Resumo

The classical Kramer sampling theorem provides a method for obtaining orthogonal sampling formulas. Besides, it has been the cornerstone for a significant mathematical literature on the topic of sampling theorems associated with differential and difference problems. In this work we provide, in an unified way, new and old generalizations of this result corresponding to various different settings; all these generalizations are illustrated with examples. All the different situations along the paper share a basic approach: the functions to be sampled are obtaining by duality in a separable Hilbert space H through an H -valued kernel K defined on an appropriate domain.

Formato

application/pdf

Identificador

http://oa.upm.es/29340/

Idioma(s)

eng

Publicador

E.T.S.I. Telecomunicación (UPM)

Relação

http://oa.upm.es/29340/1/INVE_MEM_2013_165715.pdf

http://link.springer.com/article/10.1007/s10440-013-9860-1#

info:eu-repo/semantics/altIdentifier/doi/10.1007/s10440-013-9860-1

Direitos

http://creativecommons.org/licenses/by-nc-nd/3.0/es/

info:eu-repo/semantics/openAccess

Fonte

Acta Applicandae Mathematicae, ISSN 0167-8019, 2013-12

Palavras-Chave #Telecomunicaciones #Matemáticas
Tipo

info:eu-repo/semantics/article

Artículo

PeerReviewed