23 resultados para SUPERSONIC ISOTHERMAL TURBULENCE

em Universidad Politécnica de Madrid


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The linear instability and breakdown to turbulence induced by an isolated roughness element in a boundary layer at Mach 2:5, over an isothermal flat plate with laminar adiabatic wall temperature, have been analysed by means of direct numerical simulations, aided by spatial BiGlobal and three-dimensional parabolized (PSE-3D) stability analyses. It is important to understand transition in this flow regime since the process can be slower than in incompressible flow and is crucial to prediction of local heat loads on next-generation flight vehicles. The results show that the roughness element, with a height of the order of the boundary layer displacement thickness, generates a highly unstable wake, which is composed of a low-velocity streak surrounded by a three-dimensional high-shear layer and is able to sustain the rapid growth of a number of instability modes. The most unstable of these modes are associated with varicose or sinuous deformations of the low-velocity streak; they are a consequence of the instability developing in the three-dimensional shear layer as a whole (the varicose mode) or in the lateral shear layers (the sinuous mode). The most unstable wake mode is of the varicose type and grows on average 17% faster tan the most unstable sinuous mode and 30 times faster than the most unstable boundary layer mode occurring in the absence of a roughness element. Due to the high growthrates registered in the presence of the roughness element, an amplification factor of N D 9 is reached within 50 roughness heights from the roughness trailing edge. The independently performed Navier–Stokes, spatial BiGlobal and PSE-3D stability results are in excellent agreement with each other, validating the use of simplified theories for roughness-induced transition involving wake instabilities. Following the linear stages of the laminar–turbulent transition process, the roll-up of the three-dimensional shear layer leads to the formation of a wedge of turbulence, which spreads laterally at a rate similar to that observed in the case of compressible turbulent spots for the same Mach number.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large-scale structure formation can be modeled as a nonlinear process that transfers energy from the largest scales to successively smaller scales until it is dissipated, in analogy with Kolmogorov’s cascade model of incompressible turbulence. However, cosmic turbulence is very compressible, and vorticity plays a secondary role in it. The simplest model of cosmic turbulence is the adhesion model, which can be studied perturbatively or adapting to it Kolmogorov’s non-perturbative approach to incompressible turbulence. This approach leads to observationally testable predictions, e.g., to the power-law exponent of the matter density two-point correlation function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we present results of zinc diffusion in GaAs using the liquid phase epitaxy technique from liquid solutions of Ga‐As‐Zn and Ga‐As‐Al‐Zn. Using silicon‐doped n‐GaAs substrates, working at a diffusion temperature of 850 °C, and introducing a dopant concentration ranging 1018–1019 cm−3, the most important findings regarding the diffusion properties are as follows: (a) zinc concentration in the solid depends on the square root of zinc atomic fraction in the liquid; (b) the diffusion is dominated by the interstitial‐substitutional process; (c) the diffusivity D varies as about C3 in the form D=2.9×10−67C3.05; (d) aluminum plays the role of the catalyst of the diffusion process, if it is introduced in the liquid solution, since it is found that D varies as (γAsXlAs)−1; (e) the zinc interstitial is mainly doubly ionized (Zn++i); (f) the zinc diffusion coefficient in Al0.85 Ga0.15 As is about four times greater than in GaAs; (g) by means of all these results, it is possible to control zinc diffusion processes in order to obtain optimized depth junctions and doping levels in semiconductor device fabrication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of determination of the turbulence onset in natural convection on heated inclined plates in an air environment has been experimentally revisited. The transition has been detected by using hot wire velocity measurements. The onset of turbulence has been considered to take place where velocity fluctuations (measured through turbulence intensity) start to grow. Experiments have shown that the onset depends not only on the Grashof number defined in terms of the temperature difference between the heated plate and the surrounding air. A correlation between dimensionless Grashof and Reynolds numbers has been obtained, fitting quite well the experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An earlier analysis of the Hall-magnetohydrodynamics (MHD) tearing instability [E. Ahedo and J. J. Ramos, Plasma Phys. Controlled Fusion 51, 055018 (2009)] is extended to cover the regime where the growth rate becomes comparable or exceeds the sound frequency. Like in the previous subsonic work, a resistive, two-fluid Hall-MHD model with massless electrons and zero-Larmor-radius ions is adopted and a linear stability analysis about a force-free equilibrium in slab geometry is carried out. A salient feature of this supersonic regime is that the mode eigenfunctions become intrinsically complex, but the growth rate remains purely real. Even more interestingly, the dispersion relation remains of the same form as in the subsonic regime for any value of the instability Mach number, provided only that the ion skin depth is sufficiently small for the mode ion inertial layer width to be smaller than the macroscopic lengths, a generous bound that scales like a positive power of the Lundquist number

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Kolmogorov approach to turbulence is applied to the Burgers turbulence in the stochastic adhesion model of large-scale structure formation. As the perturbative approach to this model is unreliable, here a new, non-perturbative approach, based on a suitable formulation of Kolmogorov's scaling laws, is proposed. This approach suggests that the power-law exponent of the matter density two-point correlation function is in the range 1–1.33, but it also suggests that the adhesion model neglects important aspects of the gravitational dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An elliptic computational fluid dynamics wake model based on the actuator disk concept is used to simulate a wind turbine, approximated by a disk upon which a distribution of forces, defined as axial momentum sources, is applied on an incoming non-uniform shear flow. The rotor is supposed to be uniformly loaded with the exerted forces estimated as a function of the incident wind speed, thrust coefficient and rotor diameter. The model is assessed in terms of wind speed deficit and added turbulence intensity for different turbulence models and is validated from experimental measurements of the Sexbierum wind turbine experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Análisis de sensibilidad de modelos de turbulencia para un modelo CFD de viento aplicados a un emplazamiento en terreno complejo. Validación con datos de viento y turbulencia registrados a 3 alturas en 3 torres de medida.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simplified CFD wake model based on the actuator disk concept is used to simulate the wind turbine, represented by a disk upon which a distribution of forces, defined as axial momentum sources, are applied on the incoming non-uniform flow. The rotor is supposed to be uniformly loaded, with the exerted forces function of the incident wind speed, the thrust coefficient and the rotor diameter. The model is tested under different parameterizations of turbulence models and validated through experimental measurements downwind of a wind turbine in terms of wind speed deficit and turbulence intensity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efficient high speed propulsion requires exploiting the cooling capability of the cryogenic fuel in the propulsion cycle. This paper presents the numerical model of a combined cycle engine while in air turbo-rocket configuration. Specific models of the various heat exchanger modules and the turbomachinery elements were developed to represent the physical behavior at off-design operation. The dynamic nature of the model allows the introduction of the engine control logic that limits the operation of certain subcomponents and extends the overall engine operational envelope. The specific impulse and uninstalled thrust are detailed while flying a determined trajectory between Mach 2.5 and 5 for varying throttling levels throughout the operational envelope.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transition that the expansion flow of laser-produced plasmas experiences when one moves from long, low intensity pulses (temperature vanishing at the isentropic plasma-vacuum front,lying at finite distance) to short, intense ones (non-zero, uniform temperature at the plasma-vacuum front, lying at infinity) is studied. For plznar geometry and lqge ion number Z, the transition occurs for dq5/dt=0.14(27/8)k712Z’1zn$/m4f, 12nK,,; mi, and K are laser intensity, critical density,ion mass, and Spitzer’s heat conduction coefficient. This result remains valid for finite Zit,h ough the numerical factor in d$/dt is different. Shorter wavelength lasers and higher 4 plasmas allow faster rising pulses below transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wake effect represents one of the most important aspects to be analyzed at the engineering phase of every wind farm since it supposes an important power deficit and an increase of turbulence levels with the consequent decrease of the lifetime. It depends on the wind farm design, wind turbine type and the atmospheric conditions prevailing at the site. Traditionally industry has used analytical models, quick and robust, which allow carry out at the preliminary stages wind farm engineering in a flexible way. However, new models based on Computational Fluid Dynamics (CFD) are needed. These models must increase the accuracy of the output variables avoiding at the same time an increase in the computational time. Among them, the elliptic models based on the actuator disk technique have reached an extended use during the last years. These models present three important problems in case of being used by default for the solution of large wind farms: the estimation of the reference wind speed upstream of each rotor disk, turbulence modeling and computational time. In order to minimize the consequence of these problems, this PhD Thesis proposes solutions implemented under the open source CFD solver OpenFOAM and adapted for each type of site: a correction on the reference wind speed for the general elliptic models, the semi-parabollic model for large offshore wind farms and the hybrid model for wind farms in complex terrain. All the models are validated in terms of power ratios by means of experimental data derived from real operating wind farms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flows of relevance to new generation aerospace vehicles exist, which are weakly dependent on the streamwise direction and strongly dependent on the other two spatial directions, such as the flow around the (flattened) nose of the vehicle and the associated elliptic cone model. Exploiting these characteristics, a parabolic integration of the Navier-Stokes equations is more appropriate than solution of the full equations, resulting in the so-called Parabolic Navier-Stokes (PNS). This approach not only is the best candidate, in terms of computational efficiency and accuracy, for the computation of steady base flows with the appointed properties, but also permits performing instability analysis and laminar-turbulent transition studies a-posteriori to the base flow computation. This is to be contrasted with the alternative approach of using order-of-magnitude more expensive spatial Direct Numerical Simulations (DNS) for the description of the transition process. The PNS equations used here have been formulated for an arbitrary coordinate transformation and the spatial discretization is performed using a novel stable high-order finite-difference-based numerical scheme, ensuring the recovery of highly accurate solutions using modest computing resources. For verification purposes, the boundary layer solution around a circular cone at zero angle of attack is compared in the incompressible limit with theoretical profiles. Also, the recovered shock wave angle at supersonic conditions is compared with theoretical predictions in the same circular-base cone geometry. Finally, the entire flow field, including shock position and compressible boundary layer around a 2:1 elliptic cone is recovered at Mach numbers 3 and 4

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical simulation of the aerodynamic behavior of high-speed trains under synthetic crosswinds at a 90º yaw angle is presented. The train geometry is the aerodynamic train model (ATM). Flow description based on numerical simulations is obtained using large eddy simulation (LES) and the commercial code ANSYSFluent V14.5. A crosswind whose averaged velocity and turbulence characteristics change with distance to the ground is imposed. Turbulent fluctuations that vary temporally and spatially are simulated with TurbSim code. The crosswind boundary condition is calculated for the distance the train runs during a simulation period. The inlet streamwise velocity boundary condition is generated using Taylor?s frozen turbulence hypothesis. The model gives a time history of the force and moments acting on the train; this includes averaged values, standard deviations and extreme values. Of particular interest are the spectra of the forces and moments, and the admittance spectra. For comparison, results obtained with LES and a uniform wind velocity fluctuating in time, and results obtained with Reynolds averaged Navier Stokes equations (RANS), and the averaged wind conditions, are also presented.