Supersonic regime of the Hall-magnetohydrodynamics resistive tearing instability


Autoria(s): Ahedo Galilea, Eduardo; Ramos, Jesús J.
Data(s)

01/07/2012

Resumo

An earlier analysis of the Hall-magnetohydrodynamics (MHD) tearing instability [E. Ahedo and J. J. Ramos, Plasma Phys. Controlled Fusion 51, 055018 (2009)] is extended to cover the regime where the growth rate becomes comparable or exceeds the sound frequency. Like in the previous subsonic work, a resistive, two-fluid Hall-MHD model with massless electrons and zero-Larmor-radius ions is adopted and a linear stability analysis about a force-free equilibrium in slab geometry is carried out. A salient feature of this supersonic regime is that the mode eigenfunctions become intrinsically complex, but the growth rate remains purely real. Even more interestingly, the dispersion relation remains of the same form as in the subsonic regime for any value of the instability Mach number, provided only that the ion skin depth is sufficiently small for the mode ion inertial layer width to be smaller than the macroscopic lengths, a generous bound that scales like a positive power of the Lundquist number

Formato

application/pdf

Identificador

http://oa.upm.es/16595/

Idioma(s)

eng

Publicador

E.T.S.I. Aeronáuticos (UPM)

Relação

http://oa.upm.es/16595/1/INVE_MEM_2012_135663.pdf

http://scitation.aip.org/content/aip/journal/pop/19/7/10.1063/1.4739787

info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4739787

Direitos

http://creativecommons.org/licenses/by-nc-nd/3.0/es/

info:eu-repo/semantics/openAccess

Fonte

Physics of Plasmas, ISSN 1070-664X, 2012-07, Vol. 19, No. 7

Palavras-Chave #Aeronáutica #Física
Tipo

info:eu-repo/semantics/article

Artículo

PeerReviewed