10 resultados para SPEECH
em Universidad Politécnica de Madrid
Resumo:
This paper describes the development of an Advanced Speech Communication System for Deaf People and its field evaluation in a real application domain: the renewal of Driver’s License. The system is composed of two modules. The first one is a Spanish into Spanish Sign Language (LSE: Lengua de Signos Española) translation module made up of a speech recognizer, a natural language translator (for converting a word sequence into a sequence of signs), and a 3D avatar animation module (for playing back the signs). The second module is a Spoken Spanish generator from sign-writing composed of a visual interface (for specifying a sequence of signs), a language translator (for generating the sequence of words in Spanish), and finally, a text to speech converter. For language translation, the system integrates three technologies: an example-based strategy, a rule-based translation method and a statistical translator. This paper also includes a detailed description of the evaluation carried out in the Local Traffic Office in the city of Toledo (Spain) involving real government employees and deaf people. This evaluation includes objective measurements from the system and subjective information from questionnaires. Finally, the paper reports an analysis of the main problems and a discussion about possible solutions.
Resumo:
In the last two decades, there has been an important increase in research on speech technology in Spain, mainly due to a higher level of funding from European, Spanish and local institutions and also due to a growing interest in these technologies for developing new services and applications. This paper provides a review of the main areas of speech technology addressed by research groups in Spain, their main contributions in the recent years and the main focus of interest these days. This description is classified in five main areas: audio processing including speech, speaker characterization, speech and language processing, text to speech conversion and spoken language applications. This paper also introduces the Spanish Network of Speech Technologies (RTTH. Red Temática en Tecnologías del Habla) as the research network that includes almost all the researchers working in this area, presenting some figures, its objectives and its main activities developed in the last years.
Resumo:
Several issues concerning the current use of speech interfaces are discussed and the design and development of a speech interface that enables air traffic controllers to command and control their terminals by voice is presented. A special emphasis is made in the comparison between laboratory experiments and field experiments in which a set of ergonomics-related effects are detected that cannot be observed in the controlled laboratory experiments. The paper presents both objective and subjective performance obtained in field evaluation of the system with student controllers at an air traffic control (ATC) training facility. The system exhibits high word recognition test rates (0.4% error in Spanish and 1.5% in English) and low command error (6% error in Spanish and 10.6% error in English in the field tests). Subjective impression has also been positive, encouraging future development and integration phases in the Spanish ATC terminals designed by Aeropuertos Españoles y Navegación Aérea (AENA).
Resumo:
Although there has been a lot of interest in recognizing and understanding air traffic control (ATC) speech, none of the published works have obtained detailed field data results. We have developed a system able to identify the language spoken and recognize and understand sentences in both Spanish and English. We also present field results for several in-tower controller positions. To the best of our knowledge, this is the first time that field ATC speech (not simulated) is captured, processed, and analyzed. The use of stochastic grammars allows variations in the standard phraseology that appear in field data. The robust understanding algorithm developed has 95% concept accuracy from ATC text input. It also allows changes in the presentation order of the concepts and the correction of errors created by the speech recognition engine improving it by 17% and 25%, respectively, absolute in the percentage of fully correctly understood sentences for English and Spanish in relation to the percentages of fully correctly recognized sentences. The analysis of errors due to the spontaneity of the speech and its comparison to read speech is also carried out. A 96% word accuracy for read speech is reduced to 86% word accuracy for field ATC data for Spanish for the "clearances" task confirming that field data is needed to estimate the performance of a system. A literature review and a critical discussion on the possibilities of speech recognition and understanding technology applied to ATC speech are also given.
Resumo:
This work is part of an on-going collaborative project between the medical and signal processing communities to promote new research efforts on automatic OSA (Obstructive Apnea Syndrome) diagnosis. In this paper, we explore the differences noted in phonetic classes (interphoneme) across groups (control/apnoea) and analyze their utility for OSA detection
Resumo:
Speech Technologies can provide important benefits for the development of more usable and safe in-vehicle human-machine interactive systems (HMIs). However mainly due robustness issues, the use of spoken interaction can entail important distractions to the driver. In this challenging scenario, while speech technologies are evolving, further research is necessary to explore how they can be complemented with both other modalities (multimodality) and information from the increasing number of available sensors (context-awareness). The perceived quality of speech technologies can significantly be increased by implementing such policies, which simply try to make the best use of all the available resources; and the in vehicle scenario is an excellent test-bed for this kind of initiatives. In this contribution we propose an event-based HMI design framework which combines context modelling and multimodal interaction using a W3C XML language known as SCXML. SCXML provides a general process control mechanism that is being considered by W3C to improve both voice interaction (VoiceXML) and multimodal interaction (MMI). In our approach we try to anticipate and extend these initiatives presenting a flexible SCXML-based approach for the design of a wide range of multimodal context-aware HMI in-vehicle interfaces. The proposed framework for HMI design and specification has been implemented in an automotive OSGi service platform, and it is being used and tested in the Spanish research project MARTA for the development of several in-vehicle interactive applications.
Resumo:
This paper proposes the use of Factored Translation Models (FTMs) for improving a Speech into Sign Language Translation System. These FTMs allow incorporating syntactic-semantic information during the translation process. This new information permits to reduce significantly the translation error rate. This paper also analyses different alternatives for dealing with the non-relevant words. The speech into sign language translation system has been developed and evaluated in a specific application domain: the renewal of Identity Documents and Driver’s License. The translation system uses a phrase-based translation system (Moses). The evaluation results reveal that the BLEU (BiLingual Evaluation Understudy) has improved from 69.1% to 73.9% and the mSER (multiple references Sign Error Rate) has been reduced from 30.6% to 24.8%.
Resumo:
We present a novel approach for detecting severe obstructive sleep apnea (OSA) cases by introducing non-linear analysis into sustained speech characterization. The proposed scheme was designed for providing additional information into our baseline system, built on top of state-of-the-art cepstral domain modeling techniques, aiming to improve accuracy rates. This new information is lightly correlated with our previous MFCC modeling of sustained speech and uncorrelated with the information in our continuous speech modeling scheme. Tests have been performed to evaluate the improvement for our detection task, based on sustained speech as well as combined with a continuous speech classifier, resulting in a 10% relative reduction in classification for the first and a 33% relative reduction for the fused scheme. Results encourage us to consider the existence of non-linear effects on OSA patients' voices, and to think about tools which could be used to improve short-time analysis.
Resumo:
We present a novel approach using both sustained vowels and connected speech, to detect obstructive sleep apnea (OSA) cases within a homogeneous group of speakers. The proposed scheme is based on state-of-the-art GMM-based classifiers, and acknowledges specifically the way in which acoustic models are trained on standard databases, as well as the complexity of the resulting models and their adaptation to specific data. Our experimental database contains a suitable number of utterances and sustained speech from healthy (i.e control) and OSA Spanish speakers. Finally, a 25.1% relative reduction in classification error is achieved when fusing continuous and sustained speech classifiers. Index Terms: obstructive sleep apnea (OSA), gaussian mixture models (GMMs), background model (BM), classifier fusion.
Resumo:
This paper describes a categorization module for improving the performance of a Spanish into Spanish Sign Language (LSE) translation system. This categorization module replaces Spanish words with associated tags. When implementing this module, several alternatives for dealing with non-relevant words have been studied. Non-relevant words are Spanish words not relevant in the translation process. The categorization module has been incorporated into a phrase-based system and a Statistical Finite State Transducer (SFST). The evaluation results reveal that the BLEU has increased from 69.11% to 78.79% for the phrase-based system and from 69.84% to 75.59% for the SFST.