15 resultados para Penalized regression

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Locally weighted regression is a technique that predicts the response for new data items from their neighbors in the training data set, where closer data items are assigned higher weights in the prediction. However, the original method may suffer from overfitting and fail to select the relevant variables. In this paper we propose combining a regularization approach with locally weighted regression to achieve sparse models. Specifically, the lasso is a shrinkage and selection method for linear regression. We present an algorithm that embeds lasso in an iterative procedure that alternatively computes weights and performs lasso-wise regression. The algorithm is tested on three synthetic scenarios and two real data sets. Results show that the proposed method outperforms linear and local models for several kinds of scenarios

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Species selection for forest restoration is often supported by expert knowledge on local distribution patterns of native tree species. This approach is not applicable to largely deforested regions unless enough data on pre-human tree species distribution is available. In such regions, ecological niche models may provide essential information to support species selection in the framework of forest restoration planning. In this study we used ecological niche models to predict habitat suitability for native tree species in "Tierra de Campos" region, an almost totally deforested area of the Duero Basin (Spain). Previously available models provide habitat suitability predictions for dominant native tree species, but including non-dominant tree species in the forest restoration planning may be desirable to promote biodiversity, specially in largely deforested areas were near seed sources are not expected. We used the Forest Map of Spain as species occurrence data source to maximize the number of modeled tree species. Penalized logistic regression was used to train models using climate and lithological predictors. Using model predictions a set of tools were developed to support species selection in forest restoration planning. Model predictions were used to build ordered lists of suitable species for each cell of the study area. The suitable species lists were summarized drawing maps that showed the two most suitable species for each cell. Additionally, potential distribution maps of the suitable species for the study area were drawn. For a scenario with two dominant species, the models predicted a mixed forest (Quercus ilex and a coniferous tree species) for almost one half of the study area. According to the models, 22 non-dominant native tree species are suitable for the study area, with up to six suitable species per cell. The model predictions pointed to Crataegus monogyna, Juniperus communis, J.oxycedrus and J.phoenicea as the most suitable non-dominant native tree species in the study area. Our results encourage further use of ecological niche models for forest restoration planning in largely deforested regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Linear regression is a technique widely used in digital signal processing. It consists on finding the linear function that better fits a given set of samples. This paper proposes different hardware architectures for the implementation of the linear regression method on FPGAs, specially targeting area restrictive systems. It saves area at the cost of constraining the lengths of the input signal to some fixed values. We have implemented the proposed scheme in an Automatic Modulation Classifier, meeting the hard real-time constraints this kind of systems have.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a methodology for reducing a straight line fitting regression problem to a Least Squares minimization one. This is accomplished through the definition of a measure on the data space that takes into account directional dependences of errors, and the use of polar descriptors for straight lines. This strategy improves the robustness by avoiding singularities and non-describable lines. The methodology is powerful enough to deal with non-normal bivariate heteroscedastic data error models, but can also supersede classical regression methods by making some particular assumptions. An implementation of the methodology for the normal bivariate case is developed and evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the question of maximizing classifier accuracy for classifying task-related mental activity from Magnetoencelophalography (MEG) data. We propose the use of different sources of information and introduce an automatic channel selection procedure. To determine an informative set of channels, our approach combines a variety of machine learning algorithms: feature subset selection methods, classifiers based on regularized logistic regression, information fusion, and multiobjective optimization based on probabilistic modeling of the search space. The experimental results show that our proposal is able to improve classification accuracy compared to approaches whose classifiers use only one type of MEG information or for which the set of channels is fixed a priori.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aplicación de simulación de Monte Carlo y técnicas de Análisis de la Varianza (ANOVA) a la comparación de modelos estocásticos dinámicos para accidentes de tráfico.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fractal and multifractal are concepts that have grown increasingly popular in recent years in the soil analysis, along with the development of fractal models. One of the common steps is to calculate the slope of a linear fit commonly using least squares method. This shouldn?t be a special problem, however, in many situations using experimental data the researcher has to select the range of scales at which is going to work neglecting the rest of points to achieve the best linearity that in this type of analysis is necessary. Robust regression is a form of regression analysis designed to circumvent some limitations of traditional parametric and non-parametric methods. In this method we don?t have to assume that the outlier point is simply an extreme observation drawn from the tail of a normal distribution not compromising the validity of the regression results. In this work we have evaluated the capacity of robust regression to select the points in the experimental data used trying to avoid subjective choices. Based on this analysis we have developed a new work methodology that implies two basic steps: ? Evaluation of the improvement of linear fitting when consecutive points are eliminated based on R pvalue. In this way we consider the implications of reducing the number of points. ? Evaluation of the significance of slope difference between fitting with the two extremes points and fitted with the available points. We compare the results applying this methodology and the common used least squares one. The data selected for these comparisons are coming from experimental soil roughness transect and simulated based on middle point displacement method adding tendencies and noise. The results are discussed indicating the advantages and disadvantages of each methodology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RESUMEN El apoyo a la selección de especies a la restauración de la vegetación en España en los últimos 40 años se ha basado fundamentalmente en modelos de distribución de especies, también llamados modelos de nicho ecológico, que estiman la probabilidad de presencia de las especies en función de las condiciones del medio físico (clima, suelo, etc.). Con esta tesis se ha intentado contribuir a la mejora de la capacidad predictiva de los modelos introduciendo algunas propuestas metodológicas adaptadas a los datos disponibles actualmente en España y enfocadas al uso de los modelos en la selección de especies. No siempre se dispone de datos a una resolución espacial adecuada para la escala de los proyectos de restauración de la vegetación. Sin embrago es habitual contar con datos de baja resolución espacial para casi todas las especies vegetales presentes en España. Se propone un método de recalibración que actualiza un modelo de regresión logística de baja resolución espacial con una nueva muestra de alta resolución espacial. El método permite obtener predicciones de calidad aceptable con muestras relativamente pequeñas (25 presencias de la especie) frente a las muestras mucho mayores (más de 100 presencias) que requería una estrategia de modelización convencional que no usara el modelo previo. La selección del método estadístico puede influir decisivamente en la capacidad predictiva de los modelos y por esa razón la comparación de métodos ha recibido mucha atención en la última década. Los estudios previos consideraban a la regresión logística como un método inferior a técnicas más modernas como las de máxima entropía. Los resultados de la tesis demuestran que esa diferencia observada se debe a que los modelos de máxima entropía incluyen técnicas de regularización y la versión de la regresión logística usada en las comparaciones no. Una vez incorporada la regularización a la regresión logística usando penalización, las diferencias en cuanto a capacidad predictiva desaparecen. La regresión logística penalizada es, por tanto, una alternativa más para el ajuste de modelos de distribución de especies y está a la altura de los métodos modernos con mejor capacidad predictiva como los de máxima entropía. A menudo, los modelos de distribución de especies no incluyen variables relativas al suelo debido a que no es habitual que se disponga de mediciones directas de sus propiedades físicas o químicas. La incorporación de datos de baja resolución espacial proveniente de mapas de suelo nacionales o continentales podría ser una alternativa. Los resultados de esta tesis sugieren que los modelos de distribución de especies de alta resolución espacial mejoran de forma ligera pero estadísticamente significativa su capacidad predictiva cuando se incorporan variables relativas al suelo procedente de mapas de baja resolución espacial. La validación es una de las etapas fundamentales del desarrollo de cualquier modelo empírico como los modelos de distribución de especies. Lo habitual es validar los modelos evaluando su capacidad predictiva especie a especie, es decir, comparando en un conjunto de localidades la presencia o ausencia observada de la especie con las predicciones del modelo. Este tipo de evaluación no responde a una cuestión clave en la restauración de la vegetación ¿cuales son las n especies más idóneas para el lugar a restaurar? Se ha propuesto un método de evaluación de modelos adaptado a esta cuestión que consiste en estimar la capacidad de un conjunto de modelos para discriminar entre las especies presentes y ausentes de un lugar concreto. El método se ha aplicado con éxito a la validación de 188 modelos de distribución de especies leñosas orientados a la selección de especies para la restauración de la vegetación en España. Las mejoras metodológicas propuestas permiten mejorar la capacidad predictiva de los modelos de distribución de especies aplicados a la selección de especies en la restauración de la vegetación y también permiten ampliar el número de especies para las que se puede contar con un modelo que apoye la toma de decisiones. SUMMARY During the last 40 years, decision support tools for plant species selection in ecological restoration in Spain have been based on species distribution models (also called ecological niche models), that estimate the probability of occurrence of the species as a function of environmental predictors (e.g., climate, soil). In this Thesis some methodological improvements are proposed to contribute to a better predictive performance of such models, given the current data available in Spain and focusing in the application of the models to selection of species for ecological restoration. Fine grained species distribution data are required to train models to be used at the scale of the ecological restoration projects, but this kind of data are not always available for every species. On the other hand, coarse grained data are available for almost every species in Spain. A recalibration method is proposed that updates a coarse grained logistic regression model using a new fine grained updating sample. The method allows obtaining acceptable predictive performance with reasonably small updating sample (25 occurrences of the species), in contrast with the much larger samples (more than 100 occurrences) required for a conventional modeling approach that discards the coarse grained data. The choice of the statistical method may have a dramatic effect on model performance, therefore comparisons of methods have received much interest in the last decade. Previous studies have shown a poorer performance of the logistic regression compared to novel methods like maximum entropy models. The results of this Thesis show that the observed difference is caused by the fact that maximum entropy models include regularization techniques and the versions of logistic regression compared do not. Once regularization has been added to the logistic regression using a penalization procedure, the differences in model performance disappear. Therefore, penalized logistic regression may be considered one of the best performing methods to model species distributions. Usually, species distribution models do not consider soil related predictors because direct measurements of the chemical or physical properties are often lacking. The inclusion of coarse grained soil data from national or continental soil maps could be a reasonable alternative. The results of this Thesis suggest that the performance of the models slightly increase after including soil predictors form coarse grained soil maps. Model validation is a key stage of the development of empirical models, such as species distribution models. The usual way of validating is based on the evaluation of model performance for each species separately, i.e., comparing observed species presences or absence to predicted probabilities in a set of sites. This kind of evaluation is not informative for a common question in ecological restoration projects: which n species are the most suitable for the environment of the site to be restored? A method has been proposed to address this question that estimates the ability of a set of models to discriminate among present and absent species in a evaluation site. The method has been successfully applied to the validation of 188 species distribution models used to support decisions on species selection for ecological restoration in Spain. The proposed methodological approaches improve the predictive performance of the predictive models applied to species selection in ecological restoration and increase the number of species for which a model that supports decisions can be fitted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, multiple regression analysis is used to model the top of descent (TOD) location of user-preferred descent trajectories computed by the flight management system (FMS) on over 1000 commercial flights into Melbourne, Australia. In addition to recording TOD, the cruise altitude, final altitude, cruise Mach, descent speed, wind, and engine type were also identified for use as the independent variables in the regression analysis. Both first-order and second-order models are considered, where cross-validation, hypothesis testing, and additional analysis are used to compare models. This identifies the models that should give the smallest errors if used to predict TOD location for new data in the future. A model that is linear in TOD altitude, final altitude, descent speed, and wind gives an estimated standard deviation of 3.9 nmi for TOD location given the trajectory parame- ters, which means about 80% of predictions would have error less than 5 nmi in absolute value. This accuracy is better than demonstrated by other ground automation predictions using kinetic models. Furthermore, this approach would enable online learning of the model. Additional data or further knowledge of algorithms is necessary to conclude definitively that no second-order terms are appropriate. Possible applications of the linear model are described, including enabling arriving aircraft to fly optimized descents computed by the FMS even in congested airspace.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a model of Bayesian network for continuous variables, where densities and conditional densities are estimated with B-spline MoPs. We use a novel approach to directly obtain conditional densities estimation using B-spline properties. In particular we implement naive Bayes and wrapper variables selection. Finally we apply our techniques to the problem of predicting neurons morphological variables from electrophysiological ones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work proposes an automatic methodology for modeling complex systems. Our methodology is based on the combination of Grammatical Evolution and classical regression to obtain an optimal set of features that take part of a linear and convex model. This technique provides both Feature Engineering and Symbolic Regression in order to infer accurate models with no effort or designer's expertise requirements. As advanced Cloud services are becoming mainstream, the contribution of data centers in the overall power consumption of modern cities is growing dramatically. These facilities consume from 10 to 100 times more power per square foot than typical office buildings. Modeling the power consumption for these infrastructures is crucial to anticipate the effects of aggressive optimization policies, but accurate and fast power modeling is a complex challenge for high-end servers not yet satisfied by analytical approaches. For this case study, our methodology minimizes error in power prediction. This work has been tested using real Cloud applications resulting on an average error in power estimation of 3.98%. Our work improves the possibilities of deriving Cloud energy efficient policies in Cloud data centers being applicable to other computing environments with similar characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Predicting failures in a distributed system based on previous events through logistic regression is a standard approach in literature. This technique is not reliable, though, in two situations: in the prediction of rare events, which do not appear in enough proportion for the algorithm to capture, and in environments where there are too many variables, as logistic regression tends to overfit on this situations; while manually selecting a subset of variables to create the model is error- prone. On this paper, we solve an industrial research case that presented this situation with a combination of elastic net logistic regression, a method that allows us to automatically select useful variables, a process of cross-validation on top of it and the application of a rare events prediction technique to reduce computation time. This process provides two layers of cross- validation that automatically obtain the optimal model complexity and the optimal mode l parameters values, while ensuring even rare events will be correctly predicted with a low amount of training instances. We tested this method against real industrial data, obtaining a total of 60 out of 80 possible models with a 90% average model accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Social behavior is mainly based on swarm colonies, in which each individual shares its knowledge about the environment with other individuals to get optimal solutions. Such co-operative model differs from competitive models in the way that individuals die and are born by combining information of alive ones. This paper presents the particle swarm optimization with differential evolution algorithm in order to train a neural network instead the classic back propagation algorithm. The performance of a neural network for particular problems is critically dependant on the choice of the processing elements, the net architecture and the learning algorithm. This work is focused in the development of methods for the evolutionary design of artificial neural networks. This paper focuses in optimizing the topology and structure of connectivity for these networks

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The initial step in most facial age estimation systems consists of accurately aligning a model to the output of a face detector (e.g. an Active Appearance Model). This fitting process is very expensive in terms of computational resources and prone to get stuck in local minima. This makes it impractical for analysing faces in resource limited computing devices. In this paper we build a face age regressor that is able to work directly on faces cropped using a state-of-the-art face detector. Our procedure uses K nearest neighbours (K-NN) regression with a metric based on a properly tuned Fisher Linear Discriminant Analysis (LDA) projection matrix. On FG-NET we achieve a state-of-the-art Mean Absolute Error (MAE) of 5.72 years with manually aligned faces. Using face images cropped by a face detector we get a MAE of 6.87 years in the same database. Moreover, most of the algorithms presented in the literature have been evaluated on single database experiments and therefore, they report optimistically biased results. In our cross-database experiments we get a MAE of roughly 12 years, which would be the expected performance in a real world application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, a plethora of approaches have been proposed to deal with the increasingly challenging task of multi-output regression. This paper provides a survey on state-of-the-art multi-output regression methods, that are categorized as problem transformation and algorithm adaptation methods. In addition, we present the mostly used performance evaluation measures, publicly available data sets for multi-output regression real-world problems, as well as open-source software frameworks.