23 resultados para Motivation. English learning task. Interactive Whiteboard

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a low-cost efficient Interactive Whiteboard that, by fusing depth and video information provided by a low-cost depth camera, is able to detect and track user movements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este artículo ofrece una reflexión sobre el papel de los mapas conceptuales en el actual escenario de la educación In the present paper, we carry out the application of concept mapping strategies to learning Physical Chemistry, in particular, of all aspect of Corrosion. This strategy is an alternative method to supplement examinations: it can show the teacher how much the students knew and how much they didn´t know; and the students can evaluate their own learning. Before giving tile matter on Corrosion, the teachers evaluated the previous knowledge of the students in the field and explained to the students how create the conceptual maps with Cmap tools. When the subject is finished, teachers are assessed the conceptual maps developed by students and therefore also the level of the students learning. Teachers verified that the concept mapping is quite suitable for complicated theorics as Corrosion and it is an appropriate tool for the consolidation of educational experiences and for improvement affective lifelong learning. By using this method we demonstrated that the set of concepts accumulated in the cognitive structure of every student in unique and every student has therefore arranged the concepts from top to bottom in the mapping field in different ways with different linking" phrases, although these are involved in the same learning task.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Machine learning techniques are used for extracting valuable knowledge from data. Nowa¬days, these techniques are becoming even more important due to the evolution in data ac¬quisition and storage, which is leading to data with different characteristics that must be exploited. Therefore, advances in data collection must be accompanied with advances in machine learning techniques to solve new challenges that might arise, on both academic and real applications. There are several machine learning techniques depending on both data characteristics and purpose. Unsupervised classification or clustering is one of the most known techniques when data lack of supervision (unlabeled data) and the aim is to discover data groups (clusters) according to their similarity. On the other hand, supervised classification needs data with supervision (labeled data) and its aim is to make predictions about labels of new data. The presence of data labels is a very important characteristic that guides not only the learning task but also other related tasks such as validation. When only some of the available data are labeled whereas the others remain unlabeled (partially labeled data), neither clustering nor supervised classification can be used. This scenario, which is becoming common nowadays because of labeling process ignorance or cost, is tackled with semi-supervised learning techniques. This thesis focuses on the branch of semi-supervised learning closest to clustering, i.e., to discover clusters using available labels as support to guide and improve the clustering process. Another important data characteristic, different from the presence of data labels, is the relevance or not of data features. Data are characterized by features, but it is possible that not all of them are relevant, or equally relevant, for the learning process. A recent clustering tendency, related to data relevance and called subspace clustering, claims that different clusters might be described by different feature subsets. This differs from traditional solutions to data relevance problem, where a single feature subset (usually the complete set of original features) is found and used to perform the clustering process. The proximity of this work to clustering leads to the first goal of this thesis. As commented above, clustering validation is a difficult task due to the absence of data labels. Although there are many indices that can be used to assess the quality of clustering solutions, these validations depend on clustering algorithms and data characteristics. Hence, in the first goal three known clustering algorithms are used to cluster data with outliers and noise, to critically study how some of the most known validation indices behave. The main goal of this work is however to combine semi-supervised clustering with subspace clustering to obtain clustering solutions that can be correctly validated by using either known indices or expert opinions. Two different algorithms are proposed from different points of view to discover clusters characterized by different subspaces. For the first algorithm, available data labels are used for searching for subspaces firstly, before searching for clusters. This algorithm assigns each instance to only one cluster (hard clustering) and is based on mapping known labels to subspaces using supervised classification techniques. Subspaces are then used to find clusters using traditional clustering techniques. The second algorithm uses available data labels to search for subspaces and clusters at the same time in an iterative process. This algorithm assigns each instance to each cluster based on a membership probability (soft clustering) and is based on integrating known labels and the search for subspaces into a model-based clustering approach. The different proposals are tested using different real and synthetic databases, and comparisons to other methods are also included when appropriate. Finally, as an example of real and current application, different machine learning tech¬niques, including one of the proposals of this work (the most sophisticated one) are applied to a task of one of the most challenging biological problems nowadays, the human brain model¬ing. Specifically, expert neuroscientists do not agree with a neuron classification for the brain cortex, which makes impossible not only any modeling attempt but also the day-to-day work without a common way to name neurons. Therefore, machine learning techniques may help to get an accepted solution to this problem, which can be an important milestone for future research in neuroscience. Resumen Las técnicas de aprendizaje automático se usan para extraer información valiosa de datos. Hoy en día, la importancia de estas técnicas está siendo incluso mayor, debido a que la evolución en la adquisición y almacenamiento de datos está llevando a datos con diferentes características que deben ser explotadas. Por lo tanto, los avances en la recolección de datos deben ir ligados a avances en las técnicas de aprendizaje automático para resolver nuevos retos que pueden aparecer, tanto en aplicaciones académicas como reales. Existen varias técnicas de aprendizaje automático dependiendo de las características de los datos y del propósito. La clasificación no supervisada o clustering es una de las técnicas más conocidas cuando los datos carecen de supervisión (datos sin etiqueta), siendo el objetivo descubrir nuevos grupos (agrupaciones) dependiendo de la similitud de los datos. Por otra parte, la clasificación supervisada necesita datos con supervisión (datos etiquetados) y su objetivo es realizar predicciones sobre las etiquetas de nuevos datos. La presencia de las etiquetas es una característica muy importante que guía no solo el aprendizaje sino también otras tareas relacionadas como la validación. Cuando solo algunos de los datos disponibles están etiquetados, mientras que el resto permanece sin etiqueta (datos parcialmente etiquetados), ni el clustering ni la clasificación supervisada se pueden utilizar. Este escenario, que está llegando a ser común hoy en día debido a la ignorancia o el coste del proceso de etiquetado, es abordado utilizando técnicas de aprendizaje semi-supervisadas. Esta tesis trata la rama del aprendizaje semi-supervisado más cercana al clustering, es decir, descubrir agrupaciones utilizando las etiquetas disponibles como apoyo para guiar y mejorar el proceso de clustering. Otra característica importante de los datos, distinta de la presencia de etiquetas, es la relevancia o no de los atributos de los datos. Los datos se caracterizan por atributos, pero es posible que no todos ellos sean relevantes, o igualmente relevantes, para el proceso de aprendizaje. Una tendencia reciente en clustering, relacionada con la relevancia de los datos y llamada clustering en subespacios, afirma que agrupaciones diferentes pueden estar descritas por subconjuntos de atributos diferentes. Esto difiere de las soluciones tradicionales para el problema de la relevancia de los datos, en las que se busca un único subconjunto de atributos (normalmente el conjunto original de atributos) y se utiliza para realizar el proceso de clustering. La cercanía de este trabajo con el clustering lleva al primer objetivo de la tesis. Como se ha comentado previamente, la validación en clustering es una tarea difícil debido a la ausencia de etiquetas. Aunque existen muchos índices que pueden usarse para evaluar la calidad de las soluciones de clustering, estas validaciones dependen de los algoritmos de clustering utilizados y de las características de los datos. Por lo tanto, en el primer objetivo tres conocidos algoritmos se usan para agrupar datos con valores atípicos y ruido para estudiar de forma crítica cómo se comportan algunos de los índices de validación más conocidos. El objetivo principal de este trabajo sin embargo es combinar clustering semi-supervisado con clustering en subespacios para obtener soluciones de clustering que puedan ser validadas de forma correcta utilizando índices conocidos u opiniones expertas. Se proponen dos algoritmos desde dos puntos de vista diferentes para descubrir agrupaciones caracterizadas por diferentes subespacios. Para el primer algoritmo, las etiquetas disponibles se usan para bus¬car en primer lugar los subespacios antes de buscar las agrupaciones. Este algoritmo asigna cada instancia a un único cluster (hard clustering) y se basa en mapear las etiquetas cono-cidas a subespacios utilizando técnicas de clasificación supervisada. El segundo algoritmo utiliza las etiquetas disponibles para buscar de forma simultánea los subespacios y las agru¬paciones en un proceso iterativo. Este algoritmo asigna cada instancia a cada cluster con una probabilidad de pertenencia (soft clustering) y se basa en integrar las etiquetas conocidas y la búsqueda en subespacios dentro de clustering basado en modelos. Las propuestas son probadas utilizando diferentes bases de datos reales y sintéticas, incluyendo comparaciones con otros métodos cuando resulten apropiadas. Finalmente, a modo de ejemplo de una aplicación real y actual, se aplican diferentes técnicas de aprendizaje automático, incluyendo una de las propuestas de este trabajo (la más sofisticada) a una tarea de uno de los problemas biológicos más desafiantes hoy en día, el modelado del cerebro humano. Específicamente, expertos neurocientíficos no se ponen de acuerdo en una clasificación de neuronas para la corteza cerebral, lo que imposibilita no sólo cualquier intento de modelado sino también el trabajo del día a día al no tener una forma estándar de llamar a las neuronas. Por lo tanto, las técnicas de aprendizaje automático pueden ayudar a conseguir una solución aceptada para este problema, lo cual puede ser un importante hito para investigaciones futuras en neurociencia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the UPM system for the Spanish-English translation task at the NAACL 2012 workshop on statistical machine translation. This system is based on Moses. We have used all available free corpora, cleaning and deleting some repetitions. In this paper, we also propose a technique for selecting the sentences for tuning the system. This technique is based on the similarity with the sentences to translate. With our approach, we improve the BLEU score from 28.37% to 28.57%. And as a result of the WMT12 challenge we have obtained a 31.80% BLEU with the 2012 test set. Finally, we explain different experiments that we have carried out after the competition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The engineer must have sufficient theoretical knowledge to be applied to solve specific problems, with the necessary capacity to simplify these approaches, and taking into account factors such as speed, simplicity, quality and economy. In Geology, its ultimate goal is the exploration of the history of the geological events through observation, deduction, reasoning and, in exceptional cases by the direct underground exploration or experimentation. Experimentation is very limited in Geology. Reproduction laboratory of certain phenomena or geological processes is difficult because both time and space become a large scale. For this reason, some Earth Sciences are in a nearly descriptive stage whereas others closest to the experimental, Geophysics and Geochemistry, have assimilated progress experienced by the physics and chemistry. Thus, Anglo-Saxon countries clearly separate Engineering Geology from Geological Engineering, i.e. Applied Geology to the Geological Engineering concepts. Although there is a big professional overlap, the first one corresponds to scientific approach, while the last one corresponds to a technological one. Applied Geology to Engineering could be defined as the Science and Applied Geology to the design, construction and performance of engineering infrastructures in and field geology discipline. There has been much discussion on the primacy of theory over practice. Today prevails the exaggeration of practice, but you get good workers and routine and mediocre teachers. This idea forgets too that teaching problem is a problem of right balance. The approach of the action lines on the European Higher Education Area (EHEA) framework provides for such balance. Applied Geology subject represents the first real contact with the physical environment with the practice profession and works. Besides, the situation of the topic in the first trace of Study Plans for many students implies the link to other subjects and topics of the career (tunnels, dams, groundwater, roads, etc). This work analyses in depth the justification of such practical trips. It shows the criteria and methods of planning and the result which manifests itself in pupils. Once practical trips experience developed, the objective work tries to know about results and changes on student’s motivation in learning perspective. This is done regardless of the outcome of their knowledge achievements assessed properly and they are not subject to such work. For this objective, it has been designed a survey about their motivation before and after trip. Survey was made by the Unidad Docente de Geología Aplicada of the Departamento de Ingeniería y Morfología del Terreno (Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid). It was completely anonymous. Its objective was to collect the opinion of the student as a key agent of learning and teaching of the subject. All the work takes place under new teaching/learning criteria approach at the European framework in Higher Education. The results are exceptionally good with 90% of student’s participation and with very high scores in a number of questions as the itineraries, teachers and visited places (range of 4.5 to 4.2 in a 5 points scale). The majority of students are very satisfied (average of 4.5 in a 5 points scale).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Las redes Bayesianas constituyen un modelo ampliamente utilizado para la representación de relaciones de dependencia condicional en datos multivariantes. Su aprendizaje a partir de un conjunto de datos o expertos ha sido estudiado profundamente desde su concepción. Sin embargo, en determinados escenarios se demanda la obtención de un modelo común asociado a particiones de datos o conjuntos de expertos. En este caso, se trata el problema de fusión o agregación de modelos. Los trabajos y resultados en agregación de redes Bayesianas son de naturaleza variada, aunque escasos en comparación con aquellos de aprendizaje. En este documento, se proponen dos métodos para la agregación de redes Gaussianas, definidas como aquellas redes Bayesianas que modelan una distribución Gaussiana multivariante. Los métodos presentados son efectivos, precisos y producen redes con menor cantidad de parámetros en comparación con los modelos obtenidos individualmente. Además, constituyen un enfoque novedoso al incorporar nociones exploradas tradicionalmente por separado en el estado del arte. Futuras aplicaciones en entornos escalables hacen dichos métodos especialmente atractivos, dada su simplicidad y la ganancia en compacidad de la representación obtenida.---ABSTRACT---Bayesian networks are a widely used model for the representation of conditional dependence relationships among variables in multivariate data. The task of learning them from a data set or experts has been deeply studied since their conception. However, situations emerge where there is a need of obtaining a consensuated model from several data partitions or a set of experts. This situation is referred to as model fusion or aggregation. Results about Bayesian network aggregation, although rich in variety, have been scarce when compared to the learning task. In this context, two methods are proposed for the aggregation of Gaussian Bayesian networks, that is, Bayesian networks whose underlying modelled distribution is a multivariate Gaussian. Both methods are effective, precise and produce networks with fewer parameters in comparison with the models obtained by individual learning. They constitute a novel approach given that they incorporate notions traditionally explored separately in the state of the art. Future applications in scalable computer environments make such models specially attractive, given their simplicity and the gaining in sparsity of the produced model.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In the educational project described in this paper, new virtual 3D didactical contents have been developed to achieve specific outcomes, within the frame of a new methodology oriented to objectives of the European Higher Education Area directives. The motivation of the project was to serve as a new assessment method, to create a link between new programs of study with the older ones. In this project, new rubrics have been developed to be employed as an objective method of evaluation of specific and transversal outcomes, to accomplish the certification criteria of institutions like ABET (Accreditation Board for Engineering and Technology).

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Education can take advantage of e-Infrastructures to provide teachers with new opportunities to increase students' motivation and engagement while they learn. Nevertheless, teachers need to find, integrate and customize the resources provided by e-Infrastructures in an easy way. This paper presents ViSH Editor, an innovative web-based e-Learning authoring tool that aims to allow teachers to create new learning objects using e-Infrastructure resources. These new learning objects are called Virtual Excursions and are created as reusable, granular and interoperable learning objects. This way they can be reused to build new ones and they can be integrated in websites or Learning Management Systems. Details about the design, development and the tool itself are explained in this paper as well as the concept, structure and metadata of the new learning objects. Lastly, some real examples of how to enrich learning using Virtual Excursions are exposed.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

There are significant levels of concern about the relevance and the difficulty of learning some issues on Strength of Materials and Structural Analysis. Most students of Continuum Mechanics and Structural Analysis in Civil Engineering usually point out some key learning aspects as especially difficult for acquiring specific skills. These key concepts entail comprehension difficulties but ease access and applicability to structural analysis in more advanced subjects. Likewise, some elusive but basic structural concepts, such as flexibility, stiffness or influence lines, are paramount for developing further skills required for advanced structural design: tall buildings, arch-type structures as well as bridges. As new curricular itineraries are currently being implemented, it appears appropriate to devise a repository of interactive web-based applications for training in those basic concepts. That will hopefully train the student to understand the complexity of such concepts, to develop intuitive knowledge on actual structural response and to improve their preparation for exams. In this work, a web-based learning assistant system for influence lines on continuous beams is presented. It consists of a collection of interactive user-friendly applications accessible via Web. It is performed in both Spanish and English languages. Rather than a “black box” system, the procedure involves open interaction with the student, who can simulate and virtually envisage the structural response. Thus, the student is enabled to set the geometric, topologic and mechanic layout of a continuous beam and to change or shift the loading and the support conditions. Simultaneously, the changes in the beam response prompt on the screen, so that the effects of the several issues involved in structural analysis become apparent. The system is performed through a set of web pages which encompasses interactive exercises and problems, written in JavaScript under JQuery and DyGraphs frameworks, given that their efficiency and graphic capabilities are renowned. Students can freely boost their self-study on this subject in order to face their exams more confidently. Besides, this collection is expected to be added to the "Virtual Lab of Continuum Mechanics" of the UPM, launched in 2013 (http://serviciosgate.upm.es/laboratoriosvirtuales/laboratorios/medios-continuos-en-construcci%C3%B3n)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nowadays, computer simulators are becoming basic tools for education and training in many engineering fields. In the nuclear industry, the role of simulation for training of operators of nuclear power plants is also recognized of the utmost relevance. As an example, the International Atomic Energy Agency sponsors the development of nuclear reactor simulators for education, and arranges the supply of such simulation programs. Aware of this, in 2008 Gas Natural Fenosa, a Spanish gas and electric utility that owns and operate nuclear power plants and promotes university education in the nuclear technology field, provided the Department of Nuclear Engineering of Universidad Politécnica de Madrid with the Interactive Graphic Simulator (IGS) of “José Cabrera” (Zorita) nuclear power plant, an industrial facility whose commercial operation ceased definitively in April 2006. It is a state-of-the-art full-scope real-time simulator that was used for training and qualification of the operators of the plant control room, as well as to understand and analyses the plant dynamics, and to develop, qualify and validate its emergency operating procedures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In a degree course such as Forestry Engineering, the general teaching objectives consist of explaining and helping students to understand the principles of Mechanics. For some time now we have encountered significant difficulties in teaching this subject due to the students' lack of motivation and to their insufficient prior preparation for the topic. If we add to this the discipline's inherent complexity and the students' preconceptions about the subject, these teaching difficulties become considerable. For this reason a series of didactic activities have been introduced sequentially in the teaching of this subject. This work describes the methodology, procedure and results for the action of developing a work project in groups using Descartes software. The results of this experiment can be considered very positive. Some of the critical preconceptions for learning the subject can be corrected, and the tutoring process in the classroom contributes to an improvement in teacherstudent communication. Since this scheme was established, the number of students taking part each academic year has increased, and this is the group with the greatest percentage of passing scores.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Problem-based learning has been applied over the last three decades to a diverse range of learning environments. In this educational approach, different problems are posed to the learners so that they can develop different solutions while learning about the problem domain. When applied to conceptual modelling, and particularly to Qualitative Reasoning, the solutions to problems are models that represent the behaviour of a dynamic system. The learner?s task then is to bridge the gap between their initial model, as their first attempt to represent the system, and the target models that provide solutions to that problem. We propose the use of semantic technologies and resources to help in bridging that gap by providing links to terminology and formal definitions, and matching techniques to allow learners to benefit from existing models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Area, launched in 1999 with the Bologna Declaration, has bestowed such a magnitude and unprecedented agility to the transformation process undertaken by European universities. However, the change has been more profound and drastic with regards to the use of new technologies both inside and outside the classroom. This article focuses on the study and analysis of the technology’s history within the university education and its impact on teachers, students and teaching methods. All the elements that have been significant and innovative throughout the history inside the teaching process have been analyzed, from the use of blackboard and chalk during lectures, the use of slide projectors and transparent slides, to the use of electronic whiteboards and Internet nowadays. The study is complemented with two types of surveys that have been performed among teachers and students during the school years 1999 - 2011 in the School of Civil Engineering at the Polytechnic University of Madrid. The pros and cons of each of the techniques and methodologies used in the learning process over the last decades are described, unfolding how they have affected the teacher, who has evolved from writing on a whiteboard to project onto a screen, the student, who has evolved from taking handwritten notes to download information or search the Internet, and the educational process, that has evolved from the lecture to acollaborative learning and project-based learning. It is unknown how the process of learning will evolve in the future, but we do know the consequences that some of the multimedia technologies are having on teachers, students and the learning process. It is our goal as teachers to keep ourselves up to date, in order to offer the student adequate technical content, while providing proper motivation through the use of new technologies. The study provides a forecast in the evolution of multimedia within the classroom and the renewal of the education process, which in our view, will set the basis for future learning process within the context of this new interactive era.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper focuses on the general problem of coordinating multiple robots. More specifically, it addresses the self-selection of heterogeneous specialized tasks by autonomous robots. In this paper we focus on a specifically distributed or decentralized approach as we are particularly interested in a decentralized solution where the robots themselves autonomously and in an individual manner, are responsible for selecting a particular task so that all the existing tasks are optimally distributed and executed. In this regard, we have established an experimental scenario to solve the corresponding multi-task distribution problem and we propose a solution using two different approaches by applying Response Threshold Models as well as Learning Automata-based probabilistic algorithms. We have evaluated the robustness of the algorithms, perturbing the number of pending loads to simulate the robot’s error in estimating the real number of pending tasks and also the dynamic generation of loads through time. The paper ends with a critical discussion of experimental results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents the AMELIE Authoring Tool for medical e-learning applications. The tool allows for the creation of enhanced-video based didactic contents, and can be adjusted to any number of platforms and applications. Validation provides preliminary good results on its acceptance and usefulness.