3 resultados para Metamictization, brannerite, uranyl, titanium, mineral, Raman spectroscopy, U-O bond length
em Universidad Politécnica de Madrid
Resumo:
Group IV nanostructures have attracted a great deal of attention because of their potential applications in optoelectronics and nanodevices. Raman spectroscopy has been extensively used to characterize nanostructures since it provides non destructive information about their size, by the adequate modeling of the phonon confinement effect. The Raman spectrum is also sensitive to other factors, as stress and temperature, which can mix with the size effects borrowing the interpretation of the Raman spectrum. We present herein an analysis of the Raman spectra obtained for Si and SiGe nanowires; the influence of the excitation conditions and the heat dissipation media are discussed in order to optimize the experimental conditions for reliable spectra acquisition and interpretation.
Resumo:
The control of the SiGe NW composition is fundamental for the fabrication of high quality heterostructures. Raman spectroscopy has been used to analyse the composition of SiGe alloys. We present a study of the Raman spectrum of SiGe nanowires and SiGe/Si heterostructures. The inhomogeneity of the Ge composition deduced from the Raman spectrum is explained by the existence of a Ge-rich outer shell and by the interaction of the NW with the electromagnetic field associated with the laser beam.
Resumo:
Group IV semiconductor nanowires are characterized by Raman spectroscopy. The results are analyzed in terms of the heating induced by the laser beam on the nanowires. By solving the heat transport equation one can simulate the temperature reached by the NWs under the exposure to a laser beam. The results are illustrated with Si and Si1-xGex nanowires. Both bundles of nanowires and individual nanowires are studied. The main experimental conditions contributing to the nanowire heating are discussed