43 resultados para Integrable Equations in Physics
em Universidad Politécnica de Madrid
Resumo:
The notion of a differential invariant for systems of second-order differential equations on a manifold M with respect to the group of vertical automorphisms of the projection is de?ned and the Chern connection attached to a SODE allows one to determine a basis for second-order differential invariants of a SODE.
Resumo:
The lattice order degree and the strain in as-grown, Mn-implanted and post-implantedannealedInAsthinfilms were investigated with depth resolution by means of Rutherford backscattering spectrometry in channeling conditions (RBS/C). Three main crystallographic axes were analyzed for both In and As sublattices. The behaviour of the induced defects was evaluated in two regions with different native defects: the interface and the surface. The results show that Mn implantation and post-implantation annealing are anisotropic processes, affecting in a different way the In and As sublattices. The mechanisms influencing the enhancement and deterioration of the crystal quality during the implantation are discussed in relation to the as-grown defects and the segregation of the elements
Resumo:
Nitrogen sputtering yields as high as 104 atoms/ion, are obtained by irradiating N-rich-Cu3N films (N concentration: 33 ± 2 at.%) with Cu ions at energies in the range 10?42 MeV. The kinetics of N sputtering as a function of ion fluence is determined at several energies (stopping powers) for films deposited on both, glass and silicon substrates. The kinetic curves show that the amount of nitrogen release strongly increases with rising irradiation fluence up to reaching a saturation level at a low remaining nitrogen fraction (5?10%), in which no further nitrogen reduction is observed. The sputtering rate for nitrogen depletion is found to be independent of the substrate and to linearly increase with electronic stopping power (Se). A stopping power (Sth) threshold of ?3.5 keV/nm for nitrogen depletion has been estimated from extrapolation of the data. Experimental kinetic data have been analyzed within a bulk molecular recombination model. The microscopic mechanisms of the nitrogen depletion process are discussed in terms of a non-radiative exciton decay model. In particular, the estimated threshold is related to a minimum exciton density which is required to achieve efficient sputtering rates.
Resumo:
The refractive index changes induced by swift ion-beam irradiation in silica have been measured either by spectroscopic ellipsometry or through the effective indices of the optical modes propagating through the irradiated structure. The optical response has been analyzed by considering an effective homogeneous medium to simulate the nanostructured irradiated system consisting of cylindrical tracks, associated to the ion impacts, embedded into a virgin material. The role of both, irradiation fluence and stopping power, has been investigated. Above a certain electronic stopping power threshold (∼2.5 keV/nm), every ion impact creates an axial region around the trajectory with a fixed refractive index (around n = 1.475) corresponding to a certain structural phase that is independent of stopping power. The results have been compared with previous data measured by means of infrared spectroscopy and small-angle X-ray scattering; possible mechanisms and theoretical models are discussed.
Resumo:
The damage induced on quartz (c-SiO2) by heavy ions (F, O, Br) at MeV energies, where electronic stopping is dominant, has been investigated by RBS/C and optical methods. The two techniques indicate the formation of amorphous layers with an isotropic refractive index (n = 1.475) at fluences around 1014 cm−2 that are associated to electronic mechanisms. The kinetics of the process can be described as the superposition of linear (possibly initial Poisson curve) and sigmoidal (Avrami-type) contributions. The coexistence of the two kinetic regimes may be associated to the differential roles of the amorphous track cores and preamorphous halos. By using ions and energies whose maximum stopping power lies inside the crystal (O at 13 MeV, F at 15 MeV and F at 30 MeV) buried amorphous layer are formed and optical waveguides at the sample surface have been generated.
Resumo:
The elemental distribution of as-received (non-charged) and charged Li-ion battery positive electrodes containing LixNi0.8Co0.15Al0.05O2 (0.75 ? x ? 1.0) microparticles as active material is characterized by combining μ-PIXE and μ-PIGE techniques. PIGE measurements evidence that the Li distribution is inhomogeneous (existence of Li-rich and Li-depleted regions) in as-received electrodes corresponding with the distribution of secondary particles but it is homogeneous within the studied individual secondary micro-particles. The dependence of the Li distribution on electrode thickness and on charging conditions is characterized by measuring the Li distribution maps in specifically fabricated cross-sectional samples. These data show that decreasing the electrode thickness down to 35 μm and charging the batteries at slow rate give rise to more homogeneous Li depth profiles.
Resumo:
Ionoluminescence (IL) of the two SiO2 phases, amorphous silica and crystalline quartz, has been comparatively investigated in this work, in order to learn about the structural defects generated by means of ion irradiation and the role of crystalline order on the damage processes. Irradiations have been performed with Cl at 10 MeV and Br at 15 MeV, corresponding to the electronic stopping regime (i.e., where the electronic stopping power Se is dominant) and well above the amorphization threshold. The light-emission kinetics for the two main emission bands, located at 1.9 eV (652 nm) and 2.7 eV (459 nm), has been measured under the same ion irradiation conditions as a function of fluence for both, silica and quartz. The role of electronic stopping power has been also investigated and discussed within current views for electronic damage. Our experiments provide a rich phenomenological background that should help to elucidate the mechanisms responsible for light emission and defect creation.
Resumo:
Fe–Cr based alloys are the leading structural material candidates in the design of next generation reactors due to their high resistance to swelling and corrosion. Despite these good properties there are others, such as embrittlement, which require a higher level of understanding in order to improve aspects such as safety or lifetime of the reactors. The addition of Cr improves the behavior of the steels under irradiation, but not in a monotonic way. Therefore, understanding the changes in the Fe–Cr based alloys microstructure induced by irradiation and the role played by the alloying element (Cr) is needed in order to predict the response of these materials under the extreme conditions they are going to support. In this work we perform a study of the effect of Cr concentration in a bcc Fe–Cr matrix on formation and binding energies of vacancy clusters up to 5 units. The dependence of the calculated formation and binding energy is investigated with two empirical interatomic potentials specially developed to study radiation damage in Fe–Cr alloys. Results are very similar for both potentials showing an increase of the defect stability with the cluster size and no real dependence on Cr concentration for the binding energy.
Resumo:
Fixation-off sensitivity (FOS) denotes the forms of epilepsy elicited by elimination of fixation. FOS-IGE patients are rare cases [1]. In a previous work [2] we showed that two FOS-IGE patients had different altered EEG rhythms when closing eyes; only beta band was altered in patient 1 while theta, alpha and beta were altered in patient 2. In the present work, we explain the relationship between the altered brain rhythms in these patients and the disruption in functional brain networks.
Resumo:
Helium retention in irradiated tungsten leads to swelling, pore formation, sample exfoliation and embrittlement with deleterious consequences in many applications. In particular, the use of tungsten in future nuclear fusion plants is proposed due to its good refractory properties. However, serious concerns about tungsten survivability stems from the fact that it must withstand severe irradiation conditions. In magnetic fusion as well as in inertial fusion (particularly with direct drive targets), tungsten components will be exposed to low and high energy ion irradiation (helium), respectively. A common feature is that the most detrimental situations will take place in pulsed mode, i.e., high flux irradiation. There is increasing evidence of a correlation between a high helium flux and an enhancement of detrimental effects on tungsten. Nevertheless, the nature of these effects is not well understood due to the subtleties imposed by the exact temperature profile evolution, ion energy, pulse duration, existence of impurities and simultaneous irradiation with other species. Object Kinetic Monte Carlo is the technique of choice to simulate the evolution of radiation-induced damage inside solids in large temporal and space scales. We have used the recently developed code MMonCa (Modular Monte Carlo simulator), presented at COSIRES 2012 for the first time, to study He retention (and in general defect evolution) in tungsten samples irradiated with high intensity helium pulses. The code simulates the interactions among a large variety of defects and during the irradiation stage and the subsequent annealing steps. The results show that the pulsed mode leads to significantly higher He retention at temperatures higher than 700 K. In this paper we discuss the process of He retention in terms of trap evolution. In addition, we discuss the implications of these findings for inertial fusion.
Resumo:
In this paper we address the new reduction method called Proper Generalized Decomposition (PGD) which is a discretization technique based on the use of separated representation of the unknown fields, specially well suited for solving multidimensional parametric equations. In this case, it is applied to the solution of dynamics problems. We will focus on the dynamic analysis of an one-dimensional rod with a unit harmonic load of frequency (ω) applied at a point of interest. In what follows, we will present the application of the methodology PGD to the problem in order to approximate the displacement field as the sum of the separated functions. We will consider as new variables of the problem, parameters models associated with the characteristic of the materials, in addition to the frequency. Finally, the quality of the results will be assessed based on an example.
Resumo:
There are described equations for a pair comprising a Riemannian metric and a Killing field on a surface that contain as special cases the Einstein Weyl equations (in the sense of D. Calderbank) and a real version of a special case of the Abelian vortex equations, and it is shown that the property that a metric solve these equations is preserved by the Ricci flow. The equations are solved explicitly, and among the metrics obtained are all steady gradient Ricci solitons (e.g. the cigar soliton) and the sausage metric; there are found other examples of eternal, ancient, and immortal Ricci flows, as well as some Ricci flows with conical singularities.
Resumo:
ObjectKineticMonteCarlo models allow for the study of the evolution of the damage created by irradiation to time scales that are comparable to those achieved experimentally. Therefore, the essential ObjectKineticMonteCarlo parameters can be validated through comparison with experiments. However, this validation is not trivial since a large number of parameters is necessary, including migration energies of point defects and their clusters, binding energies of point defects in clusters, as well as the interactionradii. This is particularly cumbersome when describing an alloy, such as the Fe–Cr system, which is of interest for fusion energy applications. In this work we describe an ObjectKineticMonteCarlo model for Fe–Cr alloys in the dilute limit. The parameters used in the model come either from density functional theory calculations or from empirical interatomic potentials. This model is used to reproduce isochronal resistivity recovery experiments of electron irradiateddiluteFe–Cr alloys performed by Abe and Kuramoto. The comparison between the calculated results and the experiments reveal that an important parameter is the capture radius between substitutionalCr and self-interstitialFe atoms. A parametric study is presented on the effect of the capture radius on the simulated recovery curves.
Resumo:
A simple illustrative physical model is presented to describe the kinetics of damage and amorphization by swiftheavyions (SHI) in LiNbO3. The model considers that every ion impact generates initially a defective region (halo) and a full amorphous core whose relative size depends on the electronic stopping power. Below a given stopping power threshold only a halo is generated. For increasing fluences the amorphized area grows monotonically via overlapping of a fixed number N of halos. In spite of its simplicity the model, which provides analytical solutions, describes many relevant features of the kinetic behaviour. In particular, it predicts approximate Avrami curves with parameters depending on stopping power in qualitative accordance with experiment that turn into Poisson laws well above the threshold value
Resumo:
We developed a new FPGA-based method for coincidence detection in positronemissiontomography. The method requires low device resources and no specific peripherals in order to resolve coincident digital pulses within a time window of a few nanoseconds. This method has been validated with a low-end Xilinx Spartan-3E and provided coincidence resolutions lower than 6 ns. This resolution depends directly on the signal propagation properties of the target device and the maximum available clock frequency, therefore it is expected to improve considerably on higher-end FPGAs.