14 resultados para Fractional Diffusion Equation

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We prove global existence and uniqueness of strong solutions to the logarithmic porous medium type equation with fractional diffusion ?tu + (?)1/2 log(1 + u) = 0, posed for x ? R, with nonnegative initial data in some function space of LlogL type. The solutions are shown to become bounded and C? smooth in (x, t) for all positive times. We also reformulate this equation as a transport equation with nonlocal velocity and critical viscosity, a topic of current relevance. Interesting functional inequalities are involved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We characterize the chaos in a fractional Duffing’s equation computing the Lyapunov exponents and the dimension of the strange attractor in the effective phase space of the system. We develop a specific analytical method to estimate all Lyapunov exponents and check the results with the fiduciary orbit technique and a time series estimation method.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There exists an interest in performing full core pin-by-pin computations for present nuclear reactors. In such type of problems the use of a transport approximation like the diffusion equation requires the introduction of correction parameters. Interface discontinuity factors can improve the diffusion solution to nearly reproduce a transport solution. Nevertheless, calculating accurate pin-by-pin IDF requires the knowledge of the heterogeneous neutron flux distribution, which depends on the boundary conditions of the pin-cell as well as the local variables along the nuclear reactor operation. As a consequence, it is impractical to compute them for each possible configuration. An alternative to generate accurate pin-by-pin interface discontinuity factors is to calculate reference values using zero-net-current boundary conditions and to synthesize afterwards their dependencies on the main neighborhood variables. In such way the factors can be accurately computed during fine-mesh diffusion calculations by correcting the reference values as a function of the actual environment of the pin-cell in the core. In this paper we propose a parameterization of the pin-by-pin interface discontinuity factors allowing the implementation of a cross sections library able to treat the neighborhood effect. First results are presented for typical PWR configurations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Performing three-dimensional pin-by-pin full core calculations based on an improved solution of the multi-group diffusion equation is an affordable option nowadays to compute accurate local safety parameters for light water reactors. Since a transport approximation is solved, appropriate correction factors, such as interface discontinuity factors, are required to nearly reproduce the fully heterogeneous transport solution. Calculating exact pin-by-pin discontinuity factors requires the knowledge of the heterogeneous neutron flux distribution, which depends on the boundary conditions of the pin-cell as well as the local variables along the nuclear reactor operation. As a consequence, it is impractical to compute them for each possible configuration; however, inaccurate correction factors are one major source of error in core analysis when using multi-group diffusion theory. An alternative to generate accurate pin-by-pin interface discontinuity factors is to build a functional-fitting that allows incorporating the environment dependence in the computed values. This paper suggests a methodology to consider the neighborhood effect based on the Analytic Coarse-Mesh Finite Difference method for the multi-group diffusion equation. It has been applied to both definitions of interface discontinuity factors, the one based on the Generalized Equivalence Theory and the one based on Black-Box Homogenization, and for different few energy groups structures. Conclusions are drawn over the optimal functional-fitting and demonstrative results are obtained with the multi-group pin-by-pin diffusion code COBAYA3 for representative PWR configurations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

En esta Tesis Doctoral se aborda la utilización de filtros de difusión no lineal para obtener imágenes constantes a trozos como paso previo al proceso de segmentación. En una primera parte se propone un formulación intrínseca para la ecuación de difusión no lineal que proporcione las condiciones de diseño necesarias sobre los filtros de difusión. A partir del marco teórico propuesto, se proporciona una nueva familia de difusividades; éstas son obtenidas a partir de técnicas de difusión no lineal relacionadas con los procesos de difusión regresivos. El objetivo es descomponer la imagen en regiones cerradas que sean homogéneas en sus niveles de grises sin contornos difusos. Asimismo, se prueba que la función de difusividad propuesta satisface las condiciones de un correcto planteamiento semi-discreto. Esto muestra que mediante el esquema semi-implícito habitualmente utilizado, realmente se hace un proceso de difusión no lineal directa, en lugar de difusión inversa, conectando con proceso de preservación de bordes. Bajo estas condiciones establecidas, se plantea un criterio de parada para el proceso de difusión, para obtener imágenes constantes a trozos con un bajo coste computacional. Una vez aplicado todo el proceso al caso unidimensional, se extienden los resultados teóricos, al caso de imágenes en 2D y 3D. Para el caso en 3D, se detalla el esquema numérico para el problema evolutivo no lineal, con condiciones de contorno Neumann homogéneas. Finalmente, se prueba el filtro propuesto para imágenes reales en 2D y 3D y se ilustran los resultados de la difusividad propuesta como método para obtener imágenes constantes a trozos. En el caso de imágenes 3D, se aborda la problemática del proceso previo a la segmentación del hígado, mediante imágenes reales provenientes de Tomografías Axiales Computarizadas (TAC). En ese caso, se obtienen resultados sobre la estimación de los parámetros de la función de difusividad propuesta. This Ph.D. Thesis deals with the case of using nonlinear diffusion filters to obtain piecewise constant images as a previous process for segmentation techniques. I have first shown an intrinsic formulation for the nonlinear diffusion equation to provide some design conditions on the diffusion filters. According to this theoretical framework, I have proposed a new family of diffusivities; they are obtained from nonlinear diffusion techniques and are related with backward diffusion. Their goal is to split the image in closed contours with a homogenized grey intensity inside and with no blurred edges. It has also proved that the proposed filters satisfy the well-posedness semi-discrete and full discrete scale-space requirements. This shows that by using semi-implicit schemes, a forward nonlinear diffusion equation is solved, instead of a backward nonlinear diffusion equation, connecting with an edgepreserving process. Under the conditions established for the diffusivity and using a stopping criterion I for the diffusion time, I have obtained piecewise constant images with a low computational effort. The whole process in the one-dimensional case is extended to the case where 2D and 3D theoretical results are applied to real images. For 3D, develops in detail the numerical scheme for nonlinear evolutionary problem with homogeneous Neumann boundary conditions. Finally, I have tested the proposed filter with real images for 2D and 3D and I have illustrated the effects of the proposed diffusivity function as a method to get piecewise constant images. For 3D I have developed a preprocess for liver segmentation with real images from CT (Computerized Tomography). In this case, I have obtained results on the estimation of the parameters of the given diffusivity function.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Time-resolved reflectance is proposed and effectively used for the nondestructive measurement of the optical properties in apples. The technique is based on the detection of the temporal dispersion of a short laser pulse injected into the probed medium. The time-distribution of re-emitted photons interpreted with a solution of the Diffusion equation yields the mean values of the absorption and reduced scattering coefficients of the medium. The proposed technique proved valuable for the measurement of the absorption and scattering spectra of different varieties of apples. No major variations were observed in the experimental data when the fruit was peeled, proving that the measured optical properties are referred to the pulp. The depth of probed volume was determined to be about 2 cm. Finally, the technique proved capable to follow the change in chlorophyll absorption during storage.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Time-resolved reflectance is proposed and effectively used for the nondestructive measurement of the optical properties in apples. The technique is based on the detection of the temporal dispersion of a short laser pulse injected into the probed medium. The time-distribution of re-emitted photons interpreted with a solution of the Diffusion equation yields the mean values of the absorption and reduced scattering coefficients of the medium. The proposed technique proved valuable for the measurement of the absorption and scattering spectra of different varieties of apples. No major variations were observed in the experimental data when the fruit was peeled, proving that the measured optical properties are referred to the pulp. The depth of probed volume was determined to be about 2 cm. Finally, the technique proved capable to follow the change in chlorophyll absorption during storage.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A method to reduce the bruise susceptibility of apples by controlling the moisture loss of the fruit was evaluated. Previous research indicates that reduction of the relative humidity of the storage air leads to an immediate effect on the weight loss and on skin properties and to a lower bruise susceptibility of apples. The diffusion equation is used to determine the waterpotential profile inside the fruit during storage. Characteristics of the waterpotential distribution in the fruit are related to measured bruise volumes. The results indicate how /this model can be used to control bruise susceptibility.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Surfactant monolayers are of interest in a variety of phenomena, including thin film dynamics and the formation and dynamics of foams. Measurement of surface properties has received a continuous attention and requires good theoretical models to extract the relevant physico- chemical information from experimental data. A common experimental set up consists in a shallow liquid layer whose free surface is slowly com- pressed/expanded in periodic fashion by moving two slightly immersed solid barriers, which varies the free surface area and thus the surfactant concentration. The simplest theory ignores the fluid dynamics in the bulk fluid, assuming spatially uniform surfactant concentration, which requires quite small forcing frequencies and provides reversible dynamics in the compression/expansion cycles. Sometimes, it is not clear whether depar- ture from reversibility is due to non-equilibrium effects or to the ignored fluid dynamics. Here we present a long wave theory that takes the fluid dynamics and the symmetries of the problem into account. In particular, the validity of the spatially-uniform-surfactant-concentration assumption is established and a nonlinear diffusion equation is derived. This allows for calculating spatially nonuniform monolayer dynamics and uncovering the physical mechanisms involved in the surfactant behavior. Also, this analysis can be considered a good means for extracting more relevant information from each experimental run.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La ecuación en derivadas parciales de advección difusión con reacción química es la base de los modelos de dispersión de contaminantes en la atmósfera, y los diferentes métodos numéricos empleados para su resolución han sido objeto de amplios estudios a lo largo de su desarrollo. En esta Tesis se presenta la implementación de un nuevo método conservativo para la resolución de la parte advectiva de la ecuación en derivadas parciales que modela la dispersión de contaminantes dentro del modelo mesoescalar de transporte químico CHIMERE. Este método está basado en una técnica de volúmenes finitos junto con una interpolación racional. La ventaja de este método es la conservación exacta de la masa transportada debido al empleo de la ley de conservación de masas. Para ello emplea una formulación de flujo basado en el cálculo de la integral ponderada dentro de cada celda definida para la discretización del espacio en el método de volúmenes finitos. Los resultados numéricos obtenidos en las simulaciones realizadas (implementando el modelo conservativo para la advección en el modelo CHIMERE) se han comparado con los datos observados de concentración de contaminantes registrados en la red de estaciones de seguimiento y medición distribuidas por la Península Ibérica. Los datos estadísticos de medición del error, la media normalizada y la media absoluta normalizada del error, presentan valores que están dentro de los rangos propuestos por la EPA para considerar el modelo preciso. Además, se introduce un nuevo método para resolver la parte advectivadifusiva de la ecuación en derivadas parciales que modeliza la dispersión de contaminantes en la atmósfera. Se ha empleado un método de diferencias finitas de alto orden para resolver la parte difusiva de la ecuación de transporte de contaminantes junto con el método racional conservativo para la parte advectiva en una y dos dimensiones. Los resultados obtenidos de la aplicación del método a diferentes situaciones incluyendo casos académicos y reales han sido comparados con la solución analítica de la ecuación de advección-difusión, demostrando que el nuevo método proporciona un resultado preciso para aproximar la solución. Por último, se ha desarrollado un modelo completo que contempla los fenómenos advectivo y difusivo con reacción química, usando los métodos anteriores junto con una técnica de diferenciación regresiva (BDF2). Esta técnica consiste en un método implícito multipaso de diferenciación regresiva de segundo orden, que nos permite resolver los problemas rígidos típicos de la química atmosférica, modelizados a través de sistemas de ecuaciones diferenciales ordinarias. Este método hace uso de la técnica iterativa Gauss- Seidel para obtener la solución de la parte implícita de la fórmula BDF2. El empleo de la técnica de Gauss-Seidel en lugar de otras técnicas comúnmente empleadas, como la iteración por el método de Newton, nos proporciona rapidez de cálculo y bajo consumo de memoria, ideal para obtener modelos operativos para la resolución de la cinética química atmosférica. ABSTRACT Extensive research has been performed to solve the atmospheric chemicaladvection- diffusion equation and different numerical methods have been proposed. This Thesis presents the implementation of an exactly conservative method for the advection equation in the European scale Eulerian chemistry transport model CHIMERE based on a rational interpolation and a finite volume algorithm. The advantage of the method is that the cell-integrated average is predicted via a flux formulation, thus the mass is exactly conserved. Numerical results are compared with a set of observation registered at some monitoring sites in Spain. The mean normalized bias and the mean normalized absolute error present values that are inside the range to consider an accurate model performance. In addition, it has been introduced a new method to solve the advectiondiffusion equation. It is based on a high-order accurate finite difference method to solve de diffusion equation together with a rational interpolation and a finite volume to solve the advection equation in one dimension and two dimensions. Numerical results obtained from solving several problems include academic and real atmospheric problems have been compared with the analytical solution of the advection-diffusion equation, showing that the new method give an efficient algorithm for solving such problems. Finally, a complete model has been developed to solve the atmospheric chemical-advection-diffusion equation, adding the conservative method for the advection equation, the high-order finite difference method for the diffusion equation and a second-order backward differentiation formula (BDF2) to solve the atmospheric chemical kinetics. The BDF2 is an implicit, second order multistep backward differentiation formula used to solve the stiff systems of ordinary differential equations (ODEs) from atmospheric chemistry. The Gauss-Seidel iteration is used for approximately solving the implicitly defined BDF solution, giving a faster tool than the more commonly used iterative modified Newton technique. This method implies low start-up costs and a low memory demand due to the use of Gauss-Seidel iteration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Se presentan las mejoras introducidas en un código de transporte de radiación acoplada a la hidrodinámica llamado ARWEN para el estudio de sistemas en el rango de física de alta densidad de energía (High Energy Density Physics). Los desarrollos introducidos se basan en las siguientes áreas: ít>,~ Ecuaciones de estado: se desarrolla una nueva metodología mediante la cual es posible ajustar los resultados de un modelo simple de ecuaciones de estado como QEOS a datos experimentales y resultados de AIMD. Esta metodología tiene carácter general para poder ser aplicada en gran cantidad de materuales de interés y amplia la flexibilidad de ajuste de los métodos de los que ha partido como base este trabajo. En segundo lugar, se ha desarrollado una librería para la gestión de tablas de datos de ecuaciones de estado que también incluye la gestión de tablas con datos de opacidades y de ionización. Esta nueva librería extiende las capacidades de la anterior al tener llamadas más específicas que aceleran los cálculos, y posibilidad de uso de varias tablas a la vez. Solver de difusión: se ha desarrollado un nuevo paquete para resolver la ecuación de difusión que se aplicará a la conducción de calor dentro del plasma. El método anterior no podía ser ejecutado en paralelo y producía resultados dependientes de la resolución de la malla, mientras que este método es paralelizable y además obtiene una solución con mejor convergencia, lo que supone una solución que no depende del refinamiento del mallado. Revisión del paquete de radiación: en primer lugar se ha realizado una revisión de la implementación del modelo de radiación descubriendo varios errores que han sido depurados. También se ha incluido la nueva librería de gestión de tablas de opacidades que permiten la obtención de las propiedades ópticas del plasma en multigrupos de energía. Por otra parte se ha extendido el cálculo de los coeficientes de transporte al esquema multimaterial que ha introducido David Portillo García en el paquete hidrodinámico del código de simulación. Por último se ha revisado el esquema de resolución del transporte y se ha modificado para hacerlo paralelizable. • Se ha implementado un paquete de trazado de rayos para deposición láser que extiende la utilidad del anterior al ser en 3D y poder utilizar entonces diferentes configuraciones. • Una vez realizadas todas estas tareas se ha aplicado el código ARWEN al estudio de la astrofísica de laboratorio simulando los experimentos llevados a cabo en la instalación PALS por Chantal Stehlé acerca de ondas de choque radiativas. Se han comparado los resultados experimentales frente a las predicciones del código ARWEN obteniéndose una gran concordancia en la velocidad de la onda de choque generada y en las dimensiones del precursor. El código de simulación sobre el que se ha trabajado, junto con los desarrollos aportados por otros investigadores durante la realización de esta tesis, ha permitido participar en colaboraciones con laboratorios de Francia o Japón y se han producido resultados científicos publicados basados en el trabajo descrito en esta tesis. ABSTRACT Improvements in radiation hydrodynamic code ARWEN for the study of systems in the range of physics high energy density (High Energy Density Physics) are presented. The developments introduced are based on the following áreas: • Equations of state: a new methodology was developed to adjust the results of a simple Equation of State model like QEOS to experimental data and results of AIMD. This methodology can be applied to a large amount of materials and it increases the flexibility and range of the previous methods used as basis for this work. Also a new computer library has been developed to manage data tables of thermodynamic properties as well as includes the management of opacity and ionization data tables. This new library extends the capabilities of the previous one with more specific routines, and the possibility of using múltiple tables for several materials. • Diffusion solver: a new package has been developed to solve the diffusion equation applied to the heat conduction of the plasma. The previous method is not parallelizable and it produced mesh dependent results, while this new package can be executed in parallel and achieves a more converged solution that does not depend on the refinement of the mesh. • Radiation package: the check of the radiation model rose several bugs in the implementation that had been removed. The new computer library for EOS managing includes capabilities to store opacity tables for multigroups of energy. Moreover the transport coefficients calculations have been extended for the new multimaterial hydrodynamic package developed by David Portillo García. Also the solving methodology for the transport equation has been modified to make the code run in parallel. • A new ray tracing package has been introduced to extend the previous one to 3D. Once all these tasks has been implemented, the ARWEN code has been applied to study laboratory astrophysics systems. Simulations have been done in order to reproduce the results of the experiments carried out in PALS facility by Chantal Stehlé in radiative shock production. Experimental results are in cióse agreement to the ARWEN estimations of the speed of the shock wave and the length of the precursor. The simulation code used in this thesis, including the work done in ARWEN by other colleagues at the time of this research, allowed the collaboration with other research institution in France and Japan and some of the results presented in this thesis have been published in scientific journals.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We analyse a class of estimators of the generalized diffusion coefficient for fractional Brownian motion Bt of known Hurst index H, based on weighted functionals of the single time square displacement. We show that for a certain choice of the weight function these functionals possess an ergodic property and thus provide the true, ensemble-averaged, generalized diffusion coefficient to any necessary precision from a single trajectory data, but at expense of a progressively higher experimental resolution. Convergence is fastest around H ? 0.30, a value in the subdiffusive regime.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A general fractional porous medium equation

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a Finite Element Model, which has been used for forecasting the diffusion of innovations in time and space. Unlike conventional models used in diffusion literature, the model considers the spatial heterogeneity. The implementation steps of the model are explained by applying it to the case of diffusion of photovoltaic systems in a local region in southern Germany. The applied model is based on a parabolic partial differential equation that describes the diffusion ratio of photovoltaic systems in a given region over time. The results of the application show that the Finite Element Model constitutes a powerful tool to better understand the diffusion of an innovation as a simultaneous space-time process. For future research, model limitations and possible extensions are also discussed.