On ergodic least-squares estimators of the generalized diffusion coefficient for fractional Brownian motion
Data(s) |
01/01/2013
|
---|---|
Resumo |
We analyse a class of estimators of the generalized diffusion coefficient for fractional Brownian motion Bt of known Hurst index H, based on weighted functionals of the single time square displacement. We show that for a certain choice of the weight function these functionals possess an ergodic property and thus provide the true, ensemble-averaged, generalized diffusion coefficient to any necessary precision from a single trajectory data, but at expense of a progressively higher experimental resolution. Convergence is fastest around H ? 0.30, a value in the subdiffusive regime. |
Formato |
application/pdf |
Identificador | |
Idioma(s) |
eng |
Publicador |
E.T.S.I. Agrónomos (UPM) |
Relação |
http://oa.upm.es/29439/1/INVE_MEM_2013_169639.pdf http://journals.aps.org/pre/abstract/10.1103/PhysRevE.87.030103 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.87.030103 |
Direitos |
http://creativecommons.org/licenses/by-nc-nd/3.0/es/ info:eu-repo/semantics/openAccess |
Fonte |
Physical Review e, ISSN 1539-3755, 2013-01, No. 87 |
Palavras-Chave | #Física |
Tipo |
info:eu-repo/semantics/article Artículo PeerReviewed |