22 resultados para Fault detection schemes
em Universidad Politécnica de Madrid
Resumo:
n this work, a mathematical unifying framework for designing new fault detection schemes in nonlinear stochastic continuous-time dynamical systems is developed. These schemes are based on a stochastic process, called the residual, which reflects the system behavior and whose changes are to be detected. A quickest detection scheme for the residual is proposed, which is based on the computed likelihood ratios for time-varying statistical changes in the Ornstein–Uhlenbeck process. Several expressions are provided, depending on a priori knowledge of the fault, which can be employed in a proposed CUSUM-type approximated scheme. This general setting gathers different existing fault detection schemes within a unifying framework, and allows for the definition of new ones. A comparative simulation example illustrates the behavior of the proposed schemes.
Resumo:
In this paper fault detection and isolation (FDI) schemes are applied in the context of the surveillance of emerging faults in an electrical circuit. The FDI problem is studied on a noisy nonlinear circuit, where both abrupt and incipient faults in the voltage source are considered. A rigorous analysis of fault detectability precedes the application of the fault detection (FD) scheme; then, the fault isolation (FI) phase is accomplished with two alternative FI approaches, proposed as new extensions of that FD approach. Numerical simulations illustrate the applicability of the mentioned schemes.
Resumo:
In this paper a new method for fault isolation in a class of continuous-time stochastic dynamical systems is proposed. The method is framed in the context of model-based analytical redundancy, consisting in the generation of a residual signal by means of a diagnostic observer, for its posterior analysis. Once a fault has been detected, and assuming some basic a priori knowledge about the set of possible failures in the plant, the isolation task is then formulated as a type of on-line statistical classification problem. The proposed isolation scheme employs in parallel different hypotheses tests on a statistic of the residual signal, one test for each possible fault. This isolation method is characterized by deriving for the unidimensional case, a sufficient isolability condition as well as an upperbound of the probability of missed isolation. Simulation examples illustrate the applicability of the proposed scheme.
Resumo:
In this paper, the applicability of the FRA technique is discussed as a method for detecting inter-turn faults in stator windings. Firstly, this method is tested in an individual medium-voltage stator coil with satisfactory results. Secondly, the tests are extended to a medium-voltage induction motor stator winding, in which inter-turn faults are performed in every coil end of one phase. Results of the frequency response in case of inter-turn faults are evaluated in both cases for different fault resistance values. The experimental setup is also described for each experiment. The results of the application of this technique to the detection of inter-turn faults justify further research in optimizing this technique for preventive maintenance.
Resumo:
BIPV systems are small PV generation units spread out over the territory, and whose characteristics are very diverse. This makes difficult a cost-effective procedure for monitoring, fault detection, performance analyses, operation and maintenance. As a result, many problems affecting BIPV systems go undetected. In order to carry out effective automatic fault detection procedures, we need a performance indicator that is reliable and that can be applied on many PV systems at a very low cost. The existing approaches for analyzing the performance of PV systems are often based on the Performance Ratio (PR), whose accuracy depends on good solar irradiation data, which in turn can be very difficult to obtain or cost-prohibitive for the BIPV owner. We present an alternative fault detection procedure based on a performance indicator that can be constructed on the sole basis of the energy production data measured at the BIPV systems. This procedure does not require the input of operating conditions data, such as solar irradiation, air temperature, or wind speed. The performance indicator, called Performance to Peers (P2P), is constructed from spatial and temporal correlations between the energy output of neighboring and similar PV systems. This method was developed from the analysis of the energy production data of approximately 10,000 BIPV systems located in Europe. The results of our procedure are illustrated on the hourly, daily and monthly data monitored during one year at one BIPV system located in the South of Belgium. Our results confirm that it is possible to carry out automatic fault detection procedures without solar irradiation data. P2P proves to be more stable than PR most of the time, and thus constitutes a more reliable performance indicator for fault detection procedures. We also discuss the main limitations of this novel methodology, and we suggest several future lines of research that seem promising to improve on these procedures.
Resumo:
Uno de los defectos más frecuentes en los generadores síncronos son los defectos a tierra tanto en el devanado estatórico, como de excitación. Se produce un defecto cuando el aislamiento eléctrico entre las partes activas de cualquiera de estos devanados y tierra se reduce considerablemente o desaparece. La detección de los defectos a tierra en ambos devanados es un tema ampliamente estudiado a nivel industrial. Tras la detección y confirmación de la existencia del defecto, dicha falta debe ser localizada a lo largo del devanado para su reparación, para lo que habitualmente el rotor debe ser extraído del estator. Esta operación resulta especialmente compleja y cara. Además, el hecho de limitar la corriente de defecto en ambos devanados provoca que el defecto no sea localizable visualmente, pues apenas existe daño en el generador. Por ello, se deben aplicar técnicas muy laboriosas para localizar exactamente el defecto y poder así reparar el devanado. De cara a reducir el tiempo de reparación, y con ello el tiempo en que el generador esta fuera de servicio, cualquier información por parte del relé de protección acerca de la localización del defecto resultaría de gran utilidad. El principal objetivo de esta tesis doctoral ha sido el desarrollo de nuevos algoritmos que permitan la estimación de la localización de los defectos a tierra tanto en el devanado rotórico como estatórico de máquinas síncronas. Respecto al devanado de excitación, se ha presentado un nuevo método de localización de defectos a tierra para generadores con excitación estática. Este método permite incluso distinguir si el defecto se ha producido en el devanado de excitación, o en cualquiera de los componentes del sistema de excitación, esto es, transformador de excitación, conductores de alimentación del rectificador controlado, etc. En caso de defecto a tierra en del devanado rotórico, este método proporciona una estimación de su localización. Sin embargo, para poder obtener la localización del defecto, se precisa conocer el valor de resistencia de defecto. Por ello, en este trabajo se presenta además un nuevo método para la estimación de este parámetro de forma precisa. Finalmente, se presenta un nuevo método de detección de defectos a tierra, basado en el criterio direccional, que complementa el método de localización, permitiendo tener en cuenta la influencia de las capacidades a tierra del sistema. Estas capacidades resultan determinantes a la hora de localizar el defecto de forma adecuada. En relación con el devanado estatórico, en esta tesis doctoral se presenta un nuevo algoritmo de localización de defectos a tierra para generadores que dispongan de la protección de faltas a tierra basada en la inyección de baja frecuencia. Se ha propuesto un método general, que tiene en cuenta todos los parámetros del sistema, así como una versión simplificada del método para generadores con capacidades a tierra muy reducida, que podría resultar de fácil implementación en relés de protección comercial. Los algoritmos y métodos presentados se han validado mediante ensayos experimentales en un generador de laboratorio de 5 kVA, así como en un generador comercial de 106 MVA con resultados satisfactorios y prometedores. ABSTRACT One of the most common faults in synchronous generators is the ground fault in both the stator winding and the excitation winding. In case of fault, the insulation level between the active part of any of these windings and ground lowers considerably, or even disappears. The detection of ground faults in both windings is a very researched topic. The fault current is typically limited intentionally to a reduced level. This allows to detect easily the ground faults, and therefore to avoid damage in the generator. After the detection and confirmation of the existence of a ground fault, it should be located along the winding in order to repair of the machine. Then, the rotor has to be extracted, which is a very complex and expensive operation. Moreover, the fact of limiting the fault current makes that the insulation failure is not visually detectable, because there is no visible damage in the generator. Therefore, some laborious techniques have to apply to locate accurately the fault. In order to reduce the repair time, and therefore the time that the generator is out of service, any information about the approximate location of the fault would be very useful. The main objective of this doctoral thesis has been the development of new algorithms and methods to estimate the location of ground faults in the stator and in the rotor winding of synchronous generators. Regarding the excitation winding, a new location method of ground faults in excitation winding of synchronous machines with static excitation has been presented. This method allows even to detect if the fault is at the excitation winding, or in any other component of the excitation system: controlled rectifier, excitation transformer, etc. In case of ground fault in the rotor winding, this method provides an estimation of the fault location. However, in order to calculate the location, the value of fault resistance is necessary. Therefore, a new fault-resistance estimation algorithm is presented in this text. Finally, a new fault detection algorithm based on directional criterion is described to complement the fault location method. This algorithm takes into account the influence of the capacitance-to-ground of the system, which has a remarkable impact in the accuracy of the fault location. Regarding the stator winding, a new fault-location algorithm has been presented for stator winding of synchronous generators. This algorithm is applicable to generators with ground-fault protection based in low-frequency injection. A general algorithm, which takes every parameter of the system into account, has been presented. Moreover, a simplified version of the algorithm has been proposed for generators with especially low value of capacitance to ground. This simplified algorithm might be easily implementable in protective relays. The proposed methods and algorithms have been tested in a 5 kVA laboratory generator, as well as in a 106 MVA synchronous generator with satisfactory and promising results.
Resumo:
Frequency Response Analysis is a well-known technique for the diagnosis of power transformers. Currently, this technique is under research for its application in rotary electrical machines. This paper presents significant results on the application of Frequency Response Analysis to fault detection in field winding of synchronous machines with static excitation. First, the influence of the rotor position on the frequency response is evaluated. Secondly, some relevant test results are shown regarding ground fault and inter-turn fault detection in field windings at standstill condition. The influence of the fault resistance value is also taken into account. This paper also studies the applicability of Frequency Response Analysis in fault detection in field windings while rotating. This represents an important feature because some defects only appear with the machine rated speed. Several laboratory test results show the applicability of this fault detection technique in field windings at full speed with no excitation current.
Resumo:
This paper presents a new fault detection and isolation scheme for dealing with simultaneous additive and parametric faults. The new design integrates a system for additive fault detection based on Castillo and Zufiria, 2009 and a new parametric fault detection and isolation scheme inspired in Munz and Zufiria, 2008 . It is shown that the so far existing schemes do not behave correctly when both additive and parametric faults occur simultaneously; to solve the problem a new integrated scheme is proposed. Computer simulation results are presented to confirm the theoretical studies.
Resumo:
A good and early fault detection and isolation system along with efficient alarm management and fine sensor validation systems are very important in today¿s complex process plants, specially in terms of safety enhancement and costs reduction. This paper presents a methodology for fault characterization. This is a self-learning approach developed in two phases. An initial, learning phase, where the simulation of process units, without and with different faults, will let the system (in an automated way) to detect the key variables that characterize the faults. This will be used in a second (on line) phase, where these key variables will be monitored in order to diagnose possible faults. Using this scheme the faults will be diagnosed and isolated in an early stage where the fault still has not turned into a failure.
New On-Line Excitation-System Ground Fault Location Method Tested in a 106 MVA Synchronous Generator
Resumo:
In this paper, a novel excitation-system ground-fault location method is described and tested in a 106 MVA synchronous machine. In this unit, numerous rotor ground-fault trips took place always about an hour after the synchronization to the network. However, when the field winding insulation was checked after the trips, there was no failure. The data indicated that the faults in the rotor were caused by centrifugal forces and temperature. Unexpectedly, by applying this new method, the failure was located in a cable between the excitation transformer and the automatic voltage regulator. In addition, several intentional ground faults were performed along the field winding with different fault resistance values, in order to test the accuracy of this method to locate defects in rotor windings of large generators. Therefore, this new on-line rotor ground-fault detection algorithm is tested in high-power synchronous generators with satisfactory results.
Resumo:
This paper presents a multi-stage algorithm for the dynamic condition monitoring of a gear. The algorithm provides information referred to the gear status (fault or normal condition) and estimates the mesh stiffness per shaft revolution in case that any abnormality is detected. In the first stage, the analysis of coefficients generated through discrete wavelet transformation (DWT) is proposed as a fault detection and localization tool. The second stage consists in establishing the mesh stiffness reduction associated with local failures by applying a supervised learning mode and coupled with analytical models. To do this, a multi-layer perceptron neural network has been configured using as input features statistical parameters sensitive to torsional stiffness decrease and derived from wavelet transforms of the response signal. The proposed method is applied to the gear condition monitoring and results show that it can update the mesh dynamic properties of the gear on line.
Resumo:
We discuss experiences gained by porting a Software Validation Facility (SVF) and a satellite Central Software (CSW) to a platform with support for Time and Space Partitioning (TSP). The SVF and CSW are part of the EagleEye Reference mission of the European Space Agency (ESA). As a reference mission, EagleEye is a perfect candidate to evaluate practical aspects of developing satellite CSW for and on TSP platforms. The specific TSP platform we used consists of a simulate D LEON3 CPU controlled by the XtratuM separation micro-kernel. On top of this, we run five separate partitions. Each partition ru n s its own real-time operating system or Ada run-time kernel, which in turn are running the application software of the CSW. We describe issues related to partitioning; inter-partition communication; scheduling; I/O; and fault-detection, isolation, and recovery (FDIR)
Resumo:
An accepted fact in software engineering is that software must undergo verification and validation process during development to ascertain and improve its quality level. But there are too many techniques than a single developer could master, yet, it is impossible to be certain that software is free of defects. So, it is crucial for developers to be able to choose from available evaluation techniques, the one most suitable and likely to yield optimum quality results for different products. Though, some knowledge is available on the strengths and weaknesses of the available software quality assurance techniques but not much is known yet on the relationship between different techniques and contextual behavior of the techniques. Objective: This research investigates the effectiveness of two testing techniques ? equivalence class partitioning and decision coverage and one review technique ? code review by abstraction, in terms of their fault detection capability. This will be used to strengthen the practical knowledge available on these techniques.
Resumo:
With the ever growing trend of smart phones and tablets, Android is becoming more and more popular everyday. With more than one billion active users i to date, Android is the leading technology in smart phone arena. In addition to that, Android also runs on Android TV, Android smart watches and cars. Therefore, in recent years, Android applications have become one of the major development sectors in software industry. As of mid 2013, the number of published applications on Google Play had exceeded one million and the cumulative number of downloads was more than 50 billionii. A 2013 survey also revealed that 71% of the mobile application developers work on developing Android applicationsiii. Considering this size of Android applications, it is quite evident that people rely on these applications on a daily basis for the completion of simple tasks like keeping track of weather to rather complex tasks like managing one’s bank accounts. Hence, like every other kind of code, Android code also needs to be verified in order to work properly and achieve a certain confidence level. Because of the gigantic size of the number of applications, it becomes really hard to manually test Android applications specially when it has to be verified for various versions of the OS and also, various device configurations such as different screen sizes and different hardware availability. Hence, recently there has been a lot of work on developing different testing methods for Android applications in Computer Science fraternity. The model of Android attracts researchers because of its open source nature. It makes the whole research model more streamlined when the code for both, application and the platform are readily available to analyze. And hence, there has been a great deal of research in testing and static analysis of Android applications. A great deal of this research has been focused on the input test generation for Android applications. Hence, there are a several testing tools available now, which focus on automatic generation of test cases for Android applications. These tools differ with one another on the basis of their strategies and heuristics used for this generation of test cases. But there is still very little work done on the comparison of these testing tools and the strategies they use. Recently, some research work has been carried outiv in this regard that compared the performance of various available tools with respect to their respective code coverage, fault detection, ability to work on multiple platforms and their ease of use. It was done, by running these tools on a total of 60 real world Android applications. The results of this research showed that although effective, these strategies being used by the tools, also face limitations and hence, have room for improvement. The purpose of this thesis is to extend this research into a more specific and attribute-‐ oriented way. Attributes refer to the tasks that can be completed using the Android platform. It can be anything ranging from a basic system call for receiving an SMS to more complex tasks like sending the user to another application from the current one. The idea is to develop a benchmark for Android testing tools, which is based on the performance related to these attributes. This will allow the comparison of these tools with respect to these attributes. For example, if there is an application that plays some audio file, will the testing tool be able to generate a test input that will warrant the execution of this audio file? Using multiple applications using different attributes, it can be visualized that which testing tool is more useful for which kinds of attributes. In this thesis, it was decided that 9 attributes covering the basic nature of tasks, will be targeted for the assessment of three testing tools. Later this can be done for much more attributes to compare even more testing tools. The aim of this work is to show that this approach is effective and can be used on a much larger scale. One of the flagship features of this work, which also differentiates it with the previous work, is that the applications used, are all specially made for this research. The reason for doing that is to analyze just that specific attribute in isolation, which the application is focused on, and not allow the tool to get bottlenecked by something trivial, which is not the main attribute under testing. This means 9 applications, each focused on one specific attribute. The main contributions of this thesis are: A summary of the three existing testing tools and their respective techniques for automatic test input generation of Android Applications. • A detailed study of the usage of these testing tools using the 9 applications specially designed and developed for this study. • The analysis of the obtained results of the study carried out. And a comparison of the performance of the selected tools.
Resumo:
Stream-mining approach is defined as a set of cutting-edge techniques designed to process streams of data in real time, in order to extract knowledge. In the particular case of classification, stream-mining has to adapt its behaviour to the volatile underlying data distributions, what has been called concept drift. Moreover, it is important to note that concept drift may lead to situations where predictive models become invalid and have therefore to be updated to represent the actual concepts that data poses. In this context, there is a specific type of concept drift, known as recurrent concept drift, where the concepts represented by data have already appeared in the past. In those cases the learning process could be saved or at least minimized by applying a previously trained model. This could be extremely useful in ubiquitous environments that are characterized by the existence of resource constrained devices. To deal with the aforementioned scenario, meta-models can be used in the process of enhancing the drift detection mechanisms used by data stream algorithms, by representing and predicting when the change will occur. There are some real-world situations where a concept reappears, as in the case of intrusion detection systems (IDS), where the same incidents or an adaptation of them usually reappear over time. In these environments the early prediction of drift by means of a better knowledge of past models can help to anticipate to the change, thus improving efficiency of the model regarding the training instances needed. By means of using meta-models as a recurrent drift detection mechanism, the ability to share concepts representations among different data mining processes is open. That kind of exchanges could improve the accuracy of the resultant local model as such model may benefit from patterns similar to the local concept that were observed in other scenarios, but not yet locally. This would also improve the efficiency of training instances used during the classification process, as long as the exchange of models would aid in the application of already trained recurrent models, that have been previously seen by any of the collaborative devices. Which it is to say that the scope of recurrence detection and representation is broaden. In fact the detection, representation and exchange of concept drift patterns would be extremely useful for the law enforcement activities fighting against cyber crime. Being the information exchange one of the main pillars of cooperation, national units would benefit from the experience and knowledge gained by third parties. Moreover, in the specific scope of critical infrastructures protection it is crucial to count with information exchange mechanisms, both from a strategical and technical scope. The exchange of concept drift detection schemes in cyber security environments would aid in the process of preventing, detecting and effectively responding to threads in cyber space. Furthermore, as a complement of meta-models, a mechanism to assess the similarity between classification models is also needed when dealing with recurrent concepts. In this context, when reusing a previously trained model a rough comparison between concepts is usually made, applying boolean logic. The introduction of fuzzy logic comparisons between models could lead to a better efficient reuse of previously seen concepts, by applying not just equal models, but also similar ones. This work faces the aforementioned open issues by means of: the MMPRec system, that integrates a meta-model mechanism and a fuzzy similarity function; a collaborative environment to share meta-models between different devices; a recurrent drift generator that allows to test the usefulness of recurrent drift systems, as it is the case of MMPRec. Moreover, this thesis presents an experimental validation of the proposed contributions using synthetic and real datasets.