50 resultados para WURTZITE GAN
Resumo:
This work reports on the growth of (In, Ga)N core−shell micro pillars by plasma-assisted molecular beam epitaxy using an ordered array of GaN cores grown by metal organic vapor phase epitaxy as a template. Upon (In, Ga)N growth, core−shell structures with emission at around 3.0 eV are formed. Further, the fabrication of a core−shell pin structure is demonstrated.
Resumo:
This work reports on the selective area growth mechanism of green-emitting InGaN/GaN nanocolumns. The evolution of the morphology of the InGaN segment is found to depend critically on the nominal III/V ratio as well as the diameter of the GaN section. In addition, the In distribution inside the InGaN segment is found to depend on the local III/V and In/Ga ratios.
Resumo:
Transmission electron microscopy and spatially resolved electron energy-loss spectroscopy have been applied to investigate the indium distribution and the interface morphology in axial (In,Ga)N/GaN nanowire heterostructures. The ordered axial (In,Ga)N/GaN nanowire heterostructures with an indium concentration up to 80% are grown by molecular beam epitaxy on GaN-buffered Si(111) substrates. We observed a pronounced lattice pulling effect in all the nanowire samples given in a broad transition region at the interface. The lattice pulling effect becomes smaller and the (In,Ga)N/GaN interface width is reduced as the indium concentration is increased in the (In,Ga)N section. The result can be interpreted in terms of the increased plastic strain relaxation via the generation of the misfit dislocations at the interface.
Resumo:
Room temperature electroreflectance (ER) spectroscopy has been used to study the fundamental properties of AlxInyGa${}_{1-x-y}$N/AlN/GaN heterostructures under different applied bias. The (0001)-oriented heterostructures were grown by metal-organic vapor phase epitaxy on sapphire. The band gap energy of the AlxInyGa${}_{1-x-y}{\rm{N}}$ layers has been determined from analysis of the ER spectra using Aspnes' model. The obtained values are in good agreement with a nonlinear band gap interpolation equation proposed earlier. Bias-dependent ER allows one to determine the sheet carrier density of the two-dimensional electron gas and the barrier field strength.
Resumo:
We present results of scanning transmission electron tomography on GaN/(In,Ga)N/GaN nanocolumns (NCs) that grew uniformly inclined towards the patterned, semi-polar GaN( 112̄ 2 ) substrate surface by molecular beam epitaxy. For the practical realization of the tomographic experiment, the nanocolumn axis has been aligned parallel to the rotation axis of the electron microscope goniometer. The tomographic reconstruction allows for the determination of the three-dimensional indium distribution inside the nanocolumns. This distribution is strongly interrelated with the nanocolumn morphology and faceting. The (In,Ga)N layer thickness and the indium concentration differ between crystallographically equivalent and non-equivalent facets. The largest thickness and the highest indium concentration are found at the nanocolumn apex parallel to the basal planes.