68 resultados para Latent Semantic Indexing
Resumo:
Problem-based learning has been applied over the last three decades to a diverse range of learning environments. In this educational approach, different problems are posed to the learners so that they can develop different solutions while learning about the problem domain. When applied to conceptual modelling, and particularly to Qualitative Reasoning, the solutions to problems are models that represent the behaviour of a dynamic system. The learner?s task then is to bridge the gap between their initial model, as their first attempt to represent the system, and the target models that provide solutions to that problem. We propose the use of semantic technologies and resources to help in bridging that gap by providing links to terminology and formal definitions, and matching techniques to allow learners to benefit from existing models.
Resumo:
The W3C Semantic Sensor Network Incubator group (the SSN-XG) produced an OWL 2 ontology to describe sensors and observations ? the SSN ontology, available at http://purl.oclc.org/NET/ssnx/ssn. The SSN ontology can describe sensors in terms of capabilities, measurement processes, observations and deployments. This article describes the SSN ontology. It further gives an example and describes the use of the ontology in recent research projects.
Resumo:
The LifeWear-Mobilized Lifestyle with Wearables (Lifewear) project attempts to create Ambient Intelligence (AmI) ecosystems by composing personalized services based on the user information, environmental conditions and reasoning outputs. Two of the most important benefits over traditional environments are 1) take advantage of wearable devices to get user information in a nonintrusive way and 2) integrate this information with other intelligent services and environmental sensors. This paper proposes a new ontology composed by the integration of users and services information, for semantically representing this information. Using an Enterprise Service Bus, this ontology is integrated in a semantic middleware to provide context-aware personalized and semantically annotated services, with discovery, composition and orchestration tasks. We show how these services support a real scenario proposed in the Lifewear project.
Resumo:
This work describes a semantic extension for a user-smart object interaction model based on the ECA paradigm (Event-Condition-Action). In this approach, smart objects publish their sensing (event) and action capabilities in the cloud and mobile devices are prepared to retrieve them and act as mediators to configure personalized behaviours for the objects. In this paper, the information handled by this interaction system has been shaped according several semantic models that, together with the integration of an embedded ontological and rule-based reasoner, are exploited in order to (i) automatically detect incompatible ECA rules configurations and to (ii) support complex ECA rules definitions and execution. This semantic extension may significantly improve the management of smart spaces populated with numerous smart objects from mobile personal devices, as it facilitates the configuration of coherent ECA rules.
Resumo:
Many attempts have been made to provide multilinguality to the Semantic Web, by means of annotation properties in Natural Language (NL), such as RDFs or SKOS labels, and other lexicon-ontology models, such as lemon, but there are still many issues to be solved if we want to have a truly accessible Multilingual Semantic Web (MSW). Reusability of monolingual resources (ontologies, lexicons, etc.), accessibility of multilingual resources hindered by many formats, reliability of ontological sources, disambiguation problems and multilingual presentation to the end user of all this information in NL can be mentioned as some of the most relevant problems. Unless this NL presentation is achieved, MSW will be restricted to the limits of IT experts, but even so, with great dissatisfaction and disenchantment
Resumo:
This paper introduces a semantic language developed with the objective to be used in a semantic analyzer based on linguistic and world knowledge. Linguistic knowledge is provided by a Combinatorial Dictionary and several sets of rules. Extra-linguistic information is stored in an Ontology. The meaning of the text is represented by means of a series of RDF-type triples of the form predicate (subject, object). Semantic analyzer is one of the options of the multifunctional ETAP-3 linguistic processor. The analyzer can be used for Information Extraction and Question Answering. We describe semantic representation of expressions that provide an assessment of the number of objects involved and/or give a quantitative evaluation of different types of attributes. We focus on the following aspects: 1) parametric and non-parametric attributes; 2) gradable and non-gradable attributes; 3) ontological representation of different classes of attributes; 4) absolute and relative quantitative assessment; 5) punctual and interval quantitative assessment; 6) intervals with precise and fuzzy boundaries
Resumo:
Sensor network deployments have become a primary source of big data about the real world that surrounds us, measuring a wide range of physical properties in real time. With such large amounts of heterogeneous data, a key challenge is to describe and annotate sensor data with high-level metadata, using and extending models, for instance with ontologies. However, to automate this task there is a need for enriching the sensor metadata using the actual observed measurements and extracting useful meta-information from them. This paper proposes a novel approach of characterization and extraction of semantic metadata through the analysis of sensor data raw observations. This approach consists in using approximations to represent the raw sensor measurements, based on distributions of the observation slopes, building a classi?cation scheme to automatically infer sensor metadata like the type of observed property, integrating the semantic analysis results with existing sensor networks metadata.
Resumo:
Twitter lists organise Twitter users into multiple, often overlapping, sets. We believe that these lists capture some form of emergent semantics, which may be useful to characterise. In this paper we describe an approach for such characterisation, which consists of deriving semantic relations between lists and users by analyzing the cooccurrence of keywords in list names. We use the vector space model and Latent Dirichlet Allocation to obtain similar keywords according to co-occurrence patterns. These results are then compared to similarity measures relying on WordNet and to existing Linked Data sets. Results show that co-occurrence of keywords based on members of the lists produce more synonyms and more correlated results to that of WordNet similarity measures.
Resumo:
When users face a certain problem needing a product, service, or action to solve it, selecting the best alternative among them can be a dicult task due to the uncertainty of their quality. This is especially the case in the domains where users do not have an expertise, like for example in Software Engineering. Multiple criteria decision making (MCDM) methods are methods that help making better decisions when facing the complex problem of selecting the best solution among a group of alternatives that can be compared according to different conflicting criteria. In MCDM problems, alternatives represent concrete products, services or actions that will help in achieving a goal, while criteria represent the characteristics of these alternatives that are important for making a decision.
Resumo:
This paper describes the main goals and outcomes of the EU-funded Framework 7 project entitled Semantic Evaluation at Large Scale (SEALS). The growth and success of the Semantic Web is built upon a wide range of Semantic technologies from ontology engineering tools through to semantic web service discovery and semantic search. The evaluation of such technologies ? and, indeed, assessments of their mutual compatibility ? is critical for their sustained improvement and adoption. The SEALS project is creating an open and sustainable platform on which all aspects of an evaluation can be hosted and executed and has been designed to accommodate most technology types. It is envisaged that the platform will become the de facto repository of test datasets and will allow anyone to organise, execute and store the results of technology evaluations free of charge and without corporate bias. The demonstration will show how individual tools can be prepared for evaluation, uploaded to the platform, evaluated according to some criteria and the subsequent results viewed. In addition, the demonstration will show the flexibility and power of the SEALS Platform for evaluation organisers by highlighting some of the key technologies used.
Resumo:
This paper shows the influence of the semantic content of urban sounds in the subjective evaluation of outer spaces. The study is based on the analysis conducted in three neighboring and integrated urban spaces with a different form of social ownership in the city of Cordoba, Argentina. It shows that the type of sound source present at each site influence, by its semantic content, in the user´s identification and permanence in the place. The noise present in a soundscape is able to have a high semantic content, and therefore the sound has a particular meaning for the perceiver. Every particular social group influences the production of their own sounds and how they perceive them. This allows to consider the sound as one of the factors that define the sense of "place" or "no place" of a certain urban space. Evidently the sounds, and their ability to evoke and characterize the environment, cannot be ignored in the construction and recovery of anthropological sites. This urban culture is unique and specific to every society. Thepublic spaces, with their soundscape, are part of the construction of the urban identity of a city. It is shown that for identical general sound levels present in each of the spaces, the level of annoyance or discomfort, in relation to the subjective acoustic quality, is different. This is the result of the influence of semantic content of the sounds present in each urban space. Coinciding with other similar research, the level of discomfort or annoyance decreases as the presence of natural sounds such as water, the wind in the trees or the birds singing increases, even when the objective values of noise level of natural sounds are higher.
Resumo:
The overall objective of this research project is to enrich geographic data with temporal and semantic components in order to significantly improve spatio-temporal analysis of geographic phenomena. To achieve this goal, we intend to establish and incorporate three new layers (structures) into the core of the Geographic Information by using mark-up languages as well as defining a set of methods and tools for enriching the system to make it able to retrieve and exploit such layers (semantic-temporal, geosemantic, and incremental spatio-temporal). Besides these layers, we also propose a set of models (temporal and spatial) and two semantic engines that make the most of the enriched geographic data. The roots of the project and its definition have been previously presented in Siabato & Manso-Callejo 2011. In this new position paper, we extend such work by delineating clearly the methodology and the foundations on which we will base to define the main components of this research: the spatial model, the temporal model, the semantic layers, and the semantic engines. By putting together the former paper and this new work we try to present a comprehensive description of the whole process, from pinpointing the basic problem to describing and assessing the solution. In this new article we just mention the methods and the background to describe how we intend to define the components and integrate them into the GI.
Resumo:
The creation of language resources is a time-consuming process requiring the efforts of many people. The use of resources collaboratively created by non-linguists can potentially ameliorate this situation. However, such resources often contain more errors compared to resources created by experts. For the particular case of lexica, we analyse the case of Wiktionary, a resource created along wiki principles and argue that through the use of a principled lexicon model, namely lemon, the resulting data could be better understandable to machines. We then present a platform called lemon source that supports the creation of linked lexical data along the lemon model. This tool builds on the concept of a semantic wiki to enable collaborative editing of the resources by many users concurrently. In this paper, we describe the model, the tool and present an evaluation of its usability based on a small group of users.
Resumo:
This paper proposes a methodology for developing a speech into sign language translation system considering a user-centered strategy. This method-ology consists of four main steps: analysis of technical and user requirements, data collection, technology adaptation to the new domain, and finally, evalua-tion of the system. The two most demanding tasks are the sign generation and the translation rules generation. Many other aspects can be updated automatical-ly from a parallel corpus that includes sentences (in Spanish and LSE: Lengua de Signos Española) related to the application domain. In this paper, we explain how to apply this methodology in order to develop two translation systems in two specific domains: bus transport information and hotel reception.
Resumo:
Interoperability between semantic technologies is a must because they need to be in communication to interchange ontologies and use them in the distributed and open environment of the SemanticWeb. However, such interoperability is not straightforward due to the high heterogeneity in such technologies. This chapter describes the problem of semantic technology interoperability from two different perspectives. First, from a theoretical perspective by presenting an overview of the different factors that affect interoperability and, second, from a practical perspective by reusing evaluation methods and applying them to six current semantic technologies in order to assess their interoperability.