97 resultados para Congreso, SOLAR, Sociedad Latinoamericana


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have analyzed the spectral sub-bandgap photoresponse of silicon (Si) samples implanted with vanadium (V) and titanium (Ti) at different doses and subsequently processed by pulsed-laser melting.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Within the framework of the third solar cell generation some new ideas to enlarge the spectral response of the solar cells toward the infrared have been proposed. Among them the inclusion of an Intermediate Band (IB) seems to be very promising. This paper will deal with one of the ways to generate the IB namely the deep level center approach. We will discuss not only its existence but also the carriers lifetime recovery which is necessary to obtain the expected increase of the solar cell efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a new kind of quantum dot (QD) materials for the implementation of the intermediate band solar cell (IBSC) [1]. The materials are formed by lead salt QDs of the family IV-VI (PbTe, PbSe or PbS) embedded in a semiconductor of the family II-VI (Cd1-xMgxTe, CdxZn1-xTe, and CdS1-xSex or ZnSe1-xTex, respectively). These QDs are not nucleated due to lattice mismatch, as it is the case of the InAs/GaAs QD material system grown by the Stranski-Krastanov (S-K) mode. In these materials, the QDs precipitate due to the difference in lattice type: the QD lead salt material crystallizes in the rocksalt structure, while the II-VI host material has the zincblende structure [2]. Therefore, it is possible to use lattice-matched QD/host combinations, avoiding all the strain-related problems found in previous QD-IBSC developments. In this paper we discuss the properties of the lead salt QD materials and propose that they are appropriate to overcome the fundamental drawbacks of present III-V-based QD-IBSC prototypes. We also calculate the band diagram for some examples of IV-VI/II-VI QD materials. The detailed balance efficiency limit of QD-IBSCs based on the studied materials is found to be over 60% under maximum concentration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The intermediate band (IB) solar cell (Fig. 1) has been proposed [1] to increase photovoltaic efficiency by a factor above 1.5, based on the absorption of two sub-bandgap photons to promote an electron across the bandgap. To realize this principle, that can be applied also to obtain efficient photocatalysis with sunlight, we proposed in recent years several materials where a metal or heavy element, substituting for an electropositive atom in a known semiconductor that has an appropriate band gap width (around 2 eV), forms inside the gap the partially filled levels needed for this aim

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies have dealt with the possibility of increasing light absorption by using the so-called electric field enhancement taking place within the grooves of metallic gratings. In order to evaluate the potential improvements derived from the absorption increase, we employ a simplified model to analyze the low-injection behaviour of a solar cell with a metallic grating back-reflector.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An equivalent circuit model is applied in order to describe the operation characteristics of quantum dot intermediate band solar cells (QD-IBSCs), which accounts for the recombination paths of the intermediate band (IB) through conduction band (CB), the valence band (VB) through IB, and the VB-CB transition. In this work, fitting of the measured dark J-V curves for QD-IBSCs (QD region being non-doped or direct Si-doped to n-type) and a reference GaAs p-i-n solar cell (no QDs) were carried out using this model in order to extract the diode parameters. The simulation was then performed using the extracted diode parameters to evaluate solar cell characteristics under concentration. In the case of QDSC with Si-doped (hence partially-filled) QDs, a fast recovery of the open-circuit voltage (Voc) was observed in a range of low concentration due to the IB effect. Further, at around 100X concentration, Si-doped QDSC could outperform the reference GaAs p-i-n solar cell if the current source of IB current source were sixteen times to about 10mA/cm2 compared to our present cell.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

After the successful implementation of a record performing dual-junction solar cell at ultra high concentration, in this paper we present the transition to a triple-junction device. The semiconductor structure of the solar cells is presented and the main changes in respect to a dual-junction design are briefly discussed. Cross-sectional TEM analysis of samples confirms that the quality of the triple-junction structures grown by MOVPE is good, revealing no trace of antiphase disorder, and showing flat, sharp and clear interfaces between the layers. Triple-junction solar cells manufactured on these structures have shown a peak efficiency of 36.2% at 700X, maintaining the efficiency over 35% from 300 to 1200 suns. With some changes in the structure and a fine tuning of its processing, efficiencies close to 40% at 1000 suns are envisaged.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An extended 3D distributed model based on distributed circuit units for the simulation of triple‐junction solar cells under realistic conditions for the light distribution has been developed. A special emphasis has been put in the capability of the model to accurately account for current mismatch and chromatic aberration effects. This model has been validated, as shown by the good agreement between experimental and simulation results, for different light spot characteristics including spectral mismatch and irradiance non‐uniformities. This model is then used for the prediction of the performance of a triple‐junction solar cell for a light spot corresponding to a real optical architecture in order to illustrate its suitability in assisting concentrator system analysis and design process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the atomic surface properties of differently prepared silicon and germanium (100) surfaces during metal-organic vapour phase epitaxy/chemical vapour deposition (MOVPE/MOCVD), in particular the impact of the MOVPE ambient, and applied reflectance anisotropy/difference spectroscopy (RAS/RDS) in our MOVPE reactor to in-situ watch and control the preparation on the atomic length scale for subsequent III-V-nucleation. The technological interest in the predominant opto-electronic properties of III-V-compounds drives the research for their heteroepitaxial integration on more abundant and cheaper standard substrates such as Si(100) or Ge(100). In these cases, a general task must be accomplished successfully, i.e. the growth of polar materials on non-polar substrates and, beyond that, very specific variations such as the individual interface formation and the atomic step structure, have to be controlled. Above all, the method of choice to grow industrial relevant high-performance device structures is MOVPE, not normally compatible with surface and interface sensitive characterization tools, which are commonly based on ultrahigh vacuum (UHV) ambients. A dedicated sample transfer system from MOVPE environment to UHV enabled us to benchmark the optical in-situ spectra with results from various surfaces science instruments without considering disruptive contaminants. X-ray photoelectron spectroscopy (XPS) provided direct observation of different terminations such as arsenic and phosphorous and verified oxide removal under various specific process parameters. Absorption lines in Fourier-transform infrared (FTIR) spectra were used to identify specific stretch modes of coupled hydrides and the polarization dependence of the anti-symmetric stretch modes distinguished different dimer orientations. Scanning tunnelling microscopy (STM) studied the atomic arrangement of dimers and steps and tip-induced H-desorption proved the saturation of dangling bonds after preparati- n. In-situ RAS was employed to display details transiently such as the presence of H on the surface at lower temperatures (T <; 800°C) and the absence of Si-H bonds at elevated annealing temperature and also surface terminations. Ge buffer growth by the use of GeH4 enables the preparation of smooth surfaces and leads to a more pronounced amplitude of the features in the spectra which indicates improvements of the surface quality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dual-junction solar cells formed by a GaAsP or GaInP top cell and a silicon bottom cell seem to be attractive candidates to materialize the long sought-for integration of III-V materials on silicon for photovoltaic applications. Such integration would offer a cost breakthrough for photovoltaic technology, unifying the low cost of silicon and the efficiency potential of III-V multijunction solar cells. In this study, we analyze several factors influencing the performance of the bottom subcell of this dual-junction, namely, 1) the formation of the emitter as a result of the phosphorus diffusion that takes place during the prenucleation temperature ramp and during the growth of the III-V layers; 2) the degradation in surface morphology during diffusion; and 3) the quality needed for the passivation provided by the GaP layer on the emitter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work presented here aims to reduce the cost of multijunction solar cell technology by developing ways to manufacture them on cheap substrates such as silicon. In particular, our main objective is the growth of III-V semiconductors on silicon substrates for photovoltaic applications. The goal is to create a GaAsP/Si virtual substrates onto which other III-V cells could be integrated with an interesting efficiency potential. This technology involves several challenges due to the difficulty of growing III-V materials on silicon. In this paper, our first work done aimed at developing such structure is presented. It was focused on the development of phosphorus diffusion models on silicon and on the preparation of an optimal silicon surface to grow on it III-V materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The intermediate band solar cell [1] has been proposed as a concept able to substantially enhance the efficiency limit of an ordinary single junction solar cell. If a band permitted for electrons is inserted within the forbidden band of a semiconductor then a novel path for photo generation is open: electron hole pairs may be formed by the successive absorption of two sub band gap photons using the intermediate band (IB) as a stepping stone. While the increase of the photovoltaic (PV) current is not a big achievement —it suffices to reduce the band gap— the achievement of this extra current at high voltage is the key of the IB concept. In ordinary cells the voltage is limited by the band gap so that reducing it would also reduce the band gap. In the intermediate band solar cell the high voltage is produced when the IB is permitted to have a Quasi Fermi Level (QFL) different from those of the Conduction Band (CB) and the Valence Band (VB). For it the cell must be properly isolated from the external contacts, which is achieved by putting the IB material between two n- and p-type ordinary semiconductors [2]. Efficiency thermodynamic limit of 63% is obtained for the IB solar cell1 vs. the 40% obtained [3] for ordinary single junction solar cells. Detailed information about the IB solar cells can be found elsewhere [4].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, efficiency improvement of solar cells is one of the most important issues in photovoltaic systems and CdTe is one of the most promising thin film photovoltaic materials we can found. CdTe reported efficiencies in solar energy conversion have been as good as that found in polycrystalline Si thin film cell [1], besides CdTe can be easily produced at industrial scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This contribution aims to illustrate the potential of the X-ray photoelectron spectroscopy (XPS) technique as a tool to analyze different parts of a solar cell (surface state, heterointerfaces, profile composition of ohmic contacts, etc). Here, the analysis is specifically applied to III-V multijunction solar cells used in concentrator systems. The information provided from such XPS analysis has helped to understand the physico-chemical nature of these surfaces and interfaces, and thus has guided the technological process in order to improve the solar cell performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents some of the results of a method to determine the main reliability functions of concentrator solar cells. High concentrator GaAs single junction solar cells have been tested in an Accelerated Life Test. The method can be directly applied to multi-junction solar cells. The main conclusions of this test carried out show that these solar cells are robust devices with a very low probability of failure caused by degradation during their operation life (more than 30 years). The evaluation of the probability operation function (i.e. the reliability function R(t)) is obtained for two nominal operation conditions of these cells, namely simulated concentration ratios of 700 and 1050 suns. Preliminary determination of the Mean Time to Failure indicates a value much higher than the intended operation life time of the concentrator cells.