18 resultados para image statistics

em Massachusetts Institute of Technology


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Humans recognize optical reflectance properties of surfaces such as metal, plastic, or paper from a single image without knowledge of illumination. We develop a machine vision system to perform similar recognition tasks automatically. Reflectance estimation under unknown, arbitrary illumination proves highly underconstrained due to the variety of potential illumination distributions and surface reflectance properties. We have found that the spatial structure of real-world illumination possesses some of the statistical regularities observed in the natural image statistics literature. A human or computer vision system may be able to exploit this prior information to determine the most likely surface reflectance given an observed image. We develop an algorithm for reflectance classification under unknown real-world illumination, which learns relationships between surface reflectance and certain features (statistics) computed from a single observed image. We also develop an automatic feature selection method.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper describes a machine vision system that classifies reflectance properties of surfaces such as metal, plastic, or paper, under unknown real-world illumination. We demonstrate performance of our algorithm for surfaces of arbitrary geometry. Reflectance estimation under arbitrary omnidirectional illumination proves highly underconstrained. Our reflectance estimation algorithm succeeds by learning relationships between surface reflectance and certain statistics computed from an observed image, which depend on statistical regularities in the spatial structure of real-world illumination. Although the algorithm assumes known geometry, its statistical nature makes it robust to inaccurate geometry estimates.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Humans distinguish materials such as metal, plastic, and paper effortlessly at a glance. Traditional computer vision systems cannot solve this problem at all. Recognizing surface reflectance properties from a single photograph is difficult because the observed image depends heavily on the amount of light incident from every direction. A mirrored sphere, for example, produces a different image in every environment. To make matters worse, two surfaces with different reflectance properties could produce identical images. The mirrored sphere simply reflects its surroundings, so in the right artificial setting, it could mimic the appearance of a matte ping-pong ball. Yet, humans possess an intuitive sense of what materials typically "look like" in the real world. This thesis develops computational algorithms with a similar ability to recognize reflectance properties from photographs under unknown, real-world illumination conditions. Real-world illumination is complex, with light typically incident on a surface from every direction. We find, however, that real-world illumination patterns are not arbitrary. They exhibit highly predictable spatial structure, which we describe largely in the wavelet domain. Although they differ in several respects from the typical photographs, illumination patterns share much of the regularity described in the natural image statistics literature. These properties of real-world illumination lead to predictable image statistics for a surface with given reflectance properties. We construct a system that classifies a surface according to its reflectance from a single photograph under unknown illuminination. Our algorithm learns relationships between surface reflectance and certain statistics computed from the observed image. Like the human visual system, we solve the otherwise underconstrained inverse problem of reflectance estimation by taking advantage of the statistical regularity of illumination. For surfaces with homogeneous reflectance properties and known geometry, our system rivals human performance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Under normal viewing conditions, humans find it easy to distinguish between objects made out of different materials such as plastic, metal, or paper. Untextured materials such as these have different surface reflectance properties, including lightness and gloss. With single isolated images and unknown illumination conditions, the task of estimating surface reflectance is highly underconstrained, because many combinations of reflection and illumination are consistent with a given image. In order to work out how humans estimate surface reflectance properties, we asked subjects to match the appearance of isolated spheres taken out of their original contexts. We found that subjects were able to perform the task accurately and reliably without contextual information to specify the illumination. The spheres were rendered under a variety of artificial illuminations, such as a single point light source, and a number of photographically-captured real-world illuminations from both indoor and outdoor scenes. Subjects performed more accurately for stimuli viewed under real-world patterns of illumination than under artificial illuminations, suggesting that subjects use stored assumptions about the regularities of real-world illuminations to solve the ill-posed problem.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is general consensus that context can be a rich source of information about an object's identity, location and scale. In fact, the structure of many real-world scenes is governed by strong configurational rules akin to those that apply to a single object. Here we introduce a simple probabilistic framework for modeling the relationship between context and object properties based on the correlation between the statistics of low-level features across the entire scene and the objects that it contains. The resulting scheme serves as an effective procedure for object priming, context driven focus of attention and automatic scale-selection on real-world scenes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present some extensions to the k-means algorithm for vector quantization that permit its efficient use in image segmentation and pattern classification tasks. It is shown that by introducing state variables that correspond to certain statistics of the dynamic behavior of the algorithm, it is possible to find the representative centers fo the lower dimensional maniforlds that define the boundaries between classes, for clouds of multi-dimensional, mult-class data; this permits one, for example, to find class boundaries directly from sparse data (e.g., in image segmentation tasks) or to efficiently place centers for pattern classification (e.g., with local Gaussian classifiers). The same state variables can be used to define algorithms for determining adaptively the optimal number of centers for clouds of data with space-varying density. Some examples of the applicatin of these extensions are also given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper consists of two major parts. First, we present the outline of a simple approach to very-low bandwidth video-conferencing system relying on an example-based hierarchical image compression scheme. In particular, we discuss the use of example images as a model, the number of required examples, faces as a class of semi-rigid objects, a hierarchical model based on decomposition into different time-scales, and the decomposition of face images into patches of interest. In the second part, we present several algorithms for image processing and animation as well as experimental evaluations. Among the original contributions of this paper is an automatic algorithm for pose estimation and normalization. We also review and compare different algorithms for finding the nearest neighbors in a database for a new input as well as a generalized algorithm for blending patches of interest in order to synthesize new images. Finally, we outline the possible integration of several algorithms to illustrate a simple model-based video-conference system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The need to generate new views of a 3D object from a single real image arises in several fields, including graphics and object recognition. While the traditional approach relies on the use of 3D models, we have recently introduced techniques that are applicable under restricted conditions but simpler. The approach exploits image transformations that are specific to the relevant object class and learnable from example views of other "prototypical" objects of the same class. In this paper, we introduce such a new technique by extending the notion of linear class first proposed by Poggio and Vetter. For linear object classes it is shown that linear transformations can be learned exactly from a basis set of 2D prototypical views. We demonstrate the approach on artificial objects and then show preliminary evidence that the technique can effectively "rotate" high- resolution face images from a single 2D view.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is a collection of data on the construction operation and performance of the two image dissector cameras. Some of this data is useful in deciding whether certain shortcomings are significant for a given application and if so how to compensate for them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an algorithm that uses multiple cues to recover shading and reflectance intrinsic images from a single image. Using both color information and a classifier trained to recognize gray-scale patterns, each image derivative is classified as being caused by shading or a change in the surface's reflectance. Generalized Belief Propagation is then used to propagate information from areas where the correct classification is clear to areas where it is ambiguous. We also show results on real images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of low-level vision is to estimate an underlying scene, given an observed image. Real-world scenes (e.g., albedos or shapes) can be very complex, conventionally requiring high dimensional representations which are hard to estimate and store. We propose a low-dimensional representation, called a scene recipe, that relies on the image itself to describe the complex scene configurations. Shape recipes are an example: these are the regression coefficients that predict the bandpassed shape from bandpassed image data. We describe the benefits of this representation, and show two uses illustrating their properties: (1) we improve stereo shape estimates by learning shape recipes at low resolution and applying them at full resolution; (2) Shape recipes implicitly contain information about lighting and materials and we use them for material segmentation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Binary image classifiction is a problem that has received much attention in recent years. In this paper we evaluate a selection of popular techniques in an effort to find a feature set/ classifier combination which generalizes well to full resolution image data. We then apply that system to images at one-half through one-sixteenth resolution, and consider the corresponding error rates. In addition, we further observe generalization performance as it depends on the number of training images, and lastly, compare the system's best error rates to that of a human performing an identical classification task given teh same set of test images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an image-based approach to infer 3D structure parameters using a probabilistic "shape+structure'' model. The 3D shape of a class of objects may be represented by sets of contours from silhouette views simultaneously observed from multiple calibrated cameras. Bayesian reconstructions of new shapes can then be estimated using a prior density constructed with a mixture model and probabilistic principal components analysis. We augment the shape model to incorporate structural features of interest; novel examples with missing structure parameters may then be reconstructed to obtain estimates of these parameters. Model matching and parameter inference are done entirely in the image domain and require no explicit 3D construction. Our shape model enables accurate estimation of structure despite segmentation errors or missing views in the input silhouettes, and works even with only a single input view. Using a dataset of thousands of pedestrian images generated from a synthetic model, we can perform accurate inference of the 3D locations of 19 joints on the body based on observed silhouette contours from real images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We formulate and interpret several multi-modal registration methods in the context of a unified statistical and information theoretic framework. A unified interpretation clarifies the implicit assumptions of each method yielding a better understanding of their relative strengths and weaknesses. Additionally, we discuss a generative statistical model from which we derive a novel analysis tool, the "auto-information function", as a means of assessing and exploiting the common spatial dependencies inherent in multi-modal imagery. We analytically derive useful properties of the "auto-information" as well as verify them empirically on multi-modal imagery. Among the useful aspects of the "auto-information function" is that it can be computed from imaging modalities independently and it allows one to decompose the search space of registration problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis addresses the problem of recognizing solid objects in the three-dimensional world, using two-dimensional shape information extracted from a single image. Objects can be partly occluded and can occur in cluttered scenes. A model based approach is taken, where stored models are matched to an image. The matching problem is separated into two stages, which employ different representations of objects. The first stage uses the smallest possible number of local features to find transformations from a model to an image. This minimizes the amount of search required in recognition. The second stage uses the entire edge contour of an object to verify each transformation. This reduces the chance of finding false matches.