Recognition of Surface Reflectance Properties from a Single Image under Unknown Real-World Illumination
Data(s) |
08/10/2004
08/10/2004
21/10/2001
|
---|---|
Resumo |
This paper describes a machine vision system that classifies reflectance properties of surfaces such as metal, plastic, or paper, under unknown real-world illumination. We demonstrate performance of our algorithm for surfaces of arbitrary geometry. Reflectance estimation under arbitrary omnidirectional illumination proves highly underconstrained. Our reflectance estimation algorithm succeeds by learning relationships between surface reflectance and certain statistics computed from an observed image, which depend on statistical regularities in the spatial structure of real-world illumination. Although the algorithm assumes known geometry, its statistical nature makes it robust to inaccurate geometry estimates. |
Formato |
9 p. 5961528 bytes 831200 bytes application/postscript application/pdf |
Identificador |
AIM-2001-033 |
Idioma(s) |
en_US |
Relação |
AIM-2001-033 |
Palavras-Chave | #AI #illumination #reflectance #computer vision #geometry #natural image statistics |