Recognition of Surface Reflectance Properties from a Single Image under Unknown Real-World Illumination


Autoria(s): Dror, Ron O.; Edward H. Adelson,; Willsky, Alan S.
Data(s)

08/10/2004

08/10/2004

21/10/2001

Resumo

This paper describes a machine vision system that classifies reflectance properties of surfaces such as metal, plastic, or paper, under unknown real-world illumination. We demonstrate performance of our algorithm for surfaces of arbitrary geometry. Reflectance estimation under arbitrary omnidirectional illumination proves highly underconstrained. Our reflectance estimation algorithm succeeds by learning relationships between surface reflectance and certain statistics computed from an observed image, which depend on statistical regularities in the spatial structure of real-world illumination. Although the algorithm assumes known geometry, its statistical nature makes it robust to inaccurate geometry estimates.

Formato

9 p.

5961528 bytes

831200 bytes

application/postscript

application/pdf

Identificador

AIM-2001-033

http://hdl.handle.net/1721.1/6664

Idioma(s)

en_US

Relação

AIM-2001-033

Palavras-Chave #AI #illumination #reflectance #computer vision #geometry #natural image statistics