6 resultados para ear reconstruction

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the computational role that the construction of a complete surface representation may play in the recovery of 3--D structure from motion. We present a model that combines a feature--based structure--from- -motion algorithm with smooth surface interpolation. This model can represent multiple surfaces in a given viewing direction, incorporates surface constraints from object boundaries, and groups image features using their 2--D image motion. Computer simulations relate the model's behavior to perceptual observations. In a companion paper, we discuss further perceptual experiments regarding the role of surface reconstruction in the human recovery of 3--D structure from motion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis investigates the problem of estimating the three-dimensional structure of a scene from a sequence of images. Structure information is recovered from images continuously using shading, motion or other visual mechanisms. A Kalman filter represents structure in a dense depth map. With each new image, the filter first updates the current depth map by a minimum variance estimate that best fits the new image data and the previous estimate. Then the structure estimate is predicted for the next time step by a transformation that accounts for relative camera motion. Experimental evaluation shows the significant improvement in quality and computation time that can be achieved using this technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reconstructing a surface from sparse sensory data is a well known problem in computer vision. Early vision modules typically supply sparse depth, orientation and discontinuity information. The surface reconstruction module incorporates these sparse and possibly conflicting measurements of a surface into a consistent, dense depth map. The coupled depth/slope model developed here provides a novel computational solution to the surface reconstruction problem. This method explicitly computes dense slope representation as well as dense depth representations. This marked change from previous surface reconstruction algorithms allows a natural integration of orientation constraints into the surface description, a feature not easily incorporated into earlier algorithms. In addition, the coupled depth/ slope model generalizes to allow for varying amounts of smoothness at different locations on the surface. This computational model helps conceptualize the problem and leads to two possible implementations- analog and digital. The model can be implemented as an electrical or biological analog network since the only computations required at each locally connected node are averages, additions and subtractions. A parallel digital algorithm can be derived by using finite difference approximations. The resulting system of coupled equations can be solved iteratively on a mesh-pf-processors computer, such as the Connection Machine. Furthermore, concurrent multi-grid methods are designed to speed the convergence of this digital algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a statistical image-based shape + structure model for Bayesian visual hull reconstruction and 3D structure inference. The 3D shape of a class of objects is represented by sets of contours from silhouette views simultaneously observed from multiple calibrated cameras. Bayesian reconstructions of new shapes are then estimated using a prior density constructed with a mixture model and probabilistic principal components analysis. We show how the use of a class-specific prior in a visual hull reconstruction can reduce the effect of segmentation errors from the silhouette extraction process. The proposed method is applied to a data set of pedestrian images, and improvements in the approximate 3D models under various noise conditions are shown. We further augment the shape model to incorporate structural features of interest; unknown structural parameters for a novel set of contours are then inferred via the Bayesian reconstruction process. Model matching and parameter inference are done entirely in the image domain and require no explicit 3D construction. Our shape model enables accurate estimation of structure despite segmentation errors or missing views in the input silhouettes, and works even with only a single input view. Using a data set of thousands of pedestrian images generated from a synthetic model, we can accurately infer the 3D locations of 19 joints on the body based on observed silhouette contours from real images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the linear degeneracies of projective structure estimation from point and line features across three views. We show that the rank of the linear system of equations for recovering the trilinear tensor of three views reduces to 23 (instead of 26) in the case when the scene is a Linear Line Complex (set of lines in space intersecting at a common line) and is 21 when the scene is planar. The LLC situation is only linearly degenerate, and we show that one can obtain a unique solution when the admissibility constraints of the tensor are accounted for. The line configuration described by an LLC, rather than being some obscure case, is in fact quite typical. It includes, as a particular example, the case of a camera moving down a hallway in an office environment or down an urban street. Furthermore, an LLC situation may occur as an artifact such as in direct estimation from spatio-temporal derivatives of image brightness. Therefore, an investigation into degeneracies and their remedy is important also in practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new paradigm for signal reconstruction and superresolution, Correlation Kernel Analysis (CKA), that is based on the selection of a sparse set of bases from a large dictionary of class- specific basis functions. The basis functions that we use are the correlation functions of the class of signals we are analyzing. To choose the appropriate features from this large dictionary, we use Support Vector Machine (SVM) regression and compare this to traditional Principal Component Analysis (PCA) for the tasks of signal reconstruction, superresolution, and compression. The testbed we use in this paper is a set of images of pedestrians. This paper also presents results of experiments in which we use a dictionary of multiscale basis functions and then use Basis Pursuit De-Noising to obtain a sparse, multiscale approximation of a signal. The results are analyzed and we conclude that 1) when used with a sparse representation technique, the correlation function is an effective kernel for image reconstruction and superresolution, 2) for image compression, PCA and SVM have different tradeoffs, depending on the particular metric that is used to evaluate the results, 3) in sparse representation techniques, L_1 is not a good proxy for the true measure of sparsity, L_0, and 4) the L_epsilon norm may be a better error metric for image reconstruction and compression than the L_2 norm, though the exact psychophysical metric should take into account high order structure in images.