The Coupled Depth/Slope Approach to Surface Reconstruction
Data(s) |
20/10/2004
20/10/2004
01/06/1986
|
---|---|
Resumo |
Reconstructing a surface from sparse sensory data is a well known problem in computer vision. Early vision modules typically supply sparse depth, orientation and discontinuity information. The surface reconstruction module incorporates these sparse and possibly conflicting measurements of a surface into a consistent, dense depth map. The coupled depth/slope model developed here provides a novel computational solution to the surface reconstruction problem. This method explicitly computes dense slope representation as well as dense depth representations. This marked change from previous surface reconstruction algorithms allows a natural integration of orientation constraints into the surface description, a feature not easily incorporated into earlier algorithms. In addition, the coupled depth/ slope model generalizes to allow for varying amounts of smoothness at different locations on the surface. This computational model helps conceptualize the problem and leads to two possible implementations- analog and digital. The model can be implemented as an electrical or biological analog network since the only computations required at each locally connected node are averages, additions and subtractions. A parallel digital algorithm can be derived by using finite difference approximations. The resulting system of coupled equations can be solved iteratively on a mesh-pf-processors computer, such as the Connection Machine. Furthermore, concurrent multi-grid methods are designed to speed the convergence of this digital algorithm. |
Formato |
80 p. 7912060 bytes 2975556 bytes application/postscript application/pdf |
Identificador |
AITR-908 |
Idioma(s) |
en_US |
Relação |
AITR-908 |