14 resultados para Computational integration
em Massachusetts Institute of Technology
Resumo:
Integration of inputs by cortical neurons provides the basis for the complex information processing performed in the cerebral cortex. Here, we propose a new analytic framework for understanding integration within cortical neuronal receptive fields. Based on the synaptic organization of cortex, we argue that neuronal integration is a systems--level process better studied in terms of local cortical circuitry than at the level of single neurons, and we present a method for constructing self-contained modules which capture (nonlinear) local circuit interactions. In this framework, receptive field elements naturally have dual (rather than the traditional unitary influence since they drive both excitatory and inhibitory cortical neurons. This vector-based analysis, in contrast to scalarsapproaches, greatly simplifies integration by permitting linear summation of inputs from both "classical" and "extraclassical" receptive field regions. We illustrate this by explaining two complex visual cortical phenomena, which are incompatible with scalar notions of neuronal integration.
Resumo:
We review the progress made in computational vision, as represented by Marr's approach, in the last fifteen years. First, we briefly outline computational theories developed for low, middle and high-level vision. We then discuss in more detail solutions proposed to three representative problems in vision, each dealing with a different level of visual processing. Finally, we discuss modifications to the currently established computational paradigm that appear to be dictated by the recent developments in vision.
Resumo:
The binocular perception of shape and depth relations between objects can change considerably if the viewing direction is changed only by a small angle. We explored this effect psychophysically and found a strong depth reduction effect for large disparity gradients. The effect is found to be strongest for horizontally oriented stimuli, and stronger for line stimuli than for points. This depth scaling effect is discussed in a computational framework of stereo based on a Baysian approach which allows integration of information from different types of matching primitives weighted according to their robustness.
Resumo:
The computer science technique of computational complexity analysis can provide powerful insights into the algorithm-neutral analysis of information processing tasks. Here we show that a simple, theory-neutral linguistic model of syntactic agreement and ambiguity demonstrates that natural language parsing may be computationally intractable. Significantly, we show that it may be syntactic features rather than rules that can cause this difficulty. Informally, human languages and the computationally intractable Satisfiability (SAT) problem share two costly computional mechanisms: both enforce agreement among symbols across unbounded distances (Subject-Verb agreement) and both allow ambiguity (is a word a Noun or a Verb?).
Resumo:
This thesis introduces elements of a theory of design activity and a computational framework for developing design systems. The theory stresses the opportunistic nature of designing and the complementary roles of focus and distraction, the interdependence of evaluation and generation, the multiplicity of ways of seeing over the history of a design session versus the exclusivity of a given way of seeing over an arbitrarily short period, and the incommensurability of criteria used to evaluate a design. The thesis argues for a principle based rather than rule based approach to designing documents. The Discursive Generator is presented as a computational framework for implementing specific design systems, and a simple system for arranging blocks according to a set of formal principles is developed by way of illustration. Both shape grammars and constraint based systems are used to contrast current trends in design automation with the discursive approach advocated in the thesis. The Discursive Generator is shown to have some important properties lacking in other types of systems, such as dynamism, robustness and the ability to deal with partial designs. When studied in terms of a search metaphor, the Discursive Generator is shown to exhibit behavior which is radically different from some traditional search techniques, and to avoid some of the well-known difficulties associated with them.
Resumo:
A key question regarding primate visual motion perception is whether the motion of 2D patterns is recovered by tracking distinctive localizable features [Lorenceau and Gorea, 1989; Rubin and Hochstein, 1992] or by integrating ambiguous local motion estimates [Adelson and Movshon, 1982; Wilson and Kim, 1992]. For a two-grating plaid pattern, this translates to either tracking the grating intersections or to appropriately combining the motion estimates for each grating. Since both component and feature information are simultaneously available in any plaid pattern made of contrast defined gratings, it is unclear how to determine which of the two schemes is actually used to recover the plaid"s motion. To address this problem, we have designed a plaid pattern made with subjective, rather than contrast defined, gratings. The distinguishing characteristic of such a plaid pattern is that it contains no contrast defined intersections that may be tracked. We find that notwithstanding the absence of such features, observers can accurately recover the pattern velocity. Additionally we show that the hypothesis of tracking "illusory features" to estimate pattern motion does not stand up to experimental test. These results present direct evidence in support of the idea that calls for the integration of component motions over the one that mandates tracking localized features to recover 2D pattern motion. The localized features, we suggest, are used primarily as providers of grouping information - which component motion signals to integrate and which not to.
Resumo:
Does knowledge of language consist of symbolic rules? How do children learn and use their linguistic knowledge? To elucidate these questions, we present a computational model that acquires phonological knowledge from a corpus of common English nouns and verbs. In our model the phonological knowledge is encapsulated as boolean constraints operating on classical linguistic representations of speech sounds in term of distinctive features. The learning algorithm compiles a corpus of words into increasingly sophisticated constraints. The algorithm is incremental, greedy, and fast. It yields one-shot learning of phonological constraints from a few examples. Our system exhibits behavior similar to that of young children learning phonological knowledge. As a bonus the constraints can be interpreted as classical linguistic rules. The computational model can be implemented by a surprisingly simple hardware mechanism. Our mechanism also sheds light on a fundamental AI question: How are signals related to symbols?
Resumo:
This report describes a computational system with which phonologists may describe a natural language in terms of autosegmental phonology, currently the most advanced theory pertaining to the sound systems of human languages. This system allows linguists to easily test autosegmental hypotheses against a large corpus of data. The system was designed primarily with tonal systems in mind, but also provides support for tree or feature matrix representation of phonemes (as in The Sound Pattern of English), as well as syllable structures and other aspects of phonological theory. Underspecification is allowed, and trees may be specified before, during, and after rule application. The association convention is automatically applied, and other principles such as the conjunctivity condition are supported. The method of representation was designed such that rules are designated in as close a fashion as possible to the existing conventions of autosegmental theory while adhering to a textual constraint for maximum portability.
Resumo:
This thesis describes an investigation of retinal directional selectivity. We show intracellular (whole-cell patch) recordings in turtle retina which indicate that this computation occurs prior to the ganglion cell, and we describe a pre-ganglionic circuit model to account for this and other findings which places the non-linear spatio-temporal filter at individual, oriented amacrine cell dendrites. The key non-linearity is provided by interactions between excitatory and inhibitory synaptic inputs onto the dendrites, and their distal tips provide directionally selective excitatory outputs onto ganglion cells. Detailed simulations of putative cells support this model, given reasonable parameter constraints. The performance of the model also suggests that this computational substructure may be relevant within the dendritic trees of CNS neurons in general.
Resumo:
The primary goal of this report is to demonstrate how considerations from computational complexity theory can inform grammatical theorizing. To this end, generalized phrase structure grammar (GPSG) linguistic theory is revised so that its power more closely matches the limited ability of an ideal speaker--hearer: GPSG Recognition is EXP-POLY time hard, while Revised GPSG Recognition is NP-complete. A second goal is to provide a theoretical framework within which to better understand the wide range of existing GPSG models, embodied in formal definitions as well as in implemented computer programs. A grammar for English and an informal explanation of the GPSG/RGPSG syntactic features are included in appendices.
Resumo:
Reconstructing a surface from sparse sensory data is a well known problem in computer vision. Early vision modules typically supply sparse depth, orientation and discontinuity information. The surface reconstruction module incorporates these sparse and possibly conflicting measurements of a surface into a consistent, dense depth map. The coupled depth/slope model developed here provides a novel computational solution to the surface reconstruction problem. This method explicitly computes dense slope representation as well as dense depth representations. This marked change from previous surface reconstruction algorithms allows a natural integration of orientation constraints into the surface description, a feature not easily incorporated into earlier algorithms. In addition, the coupled depth/ slope model generalizes to allow for varying amounts of smoothness at different locations on the surface. This computational model helps conceptualize the problem and leads to two possible implementations- analog and digital. The model can be implemented as an electrical or biological analog network since the only computations required at each locally connected node are averages, additions and subtractions. A parallel digital algorithm can be derived by using finite difference approximations. The resulting system of coupled equations can be solved iteratively on a mesh-pf-processors computer, such as the Connection Machine. Furthermore, concurrent multi-grid methods are designed to speed the convergence of this digital algorithm.
Resumo:
This report investigates the process of focussing as a description and explanation of the comprehension of certain anaphoric expressions in English discourse. The investigation centers on the interpretation of definite anaphora, that is, on the personal pronouns, and noun phrases used with a definite article the, this or that. Focussing is formalized as a process in which a speaker centers attention on a particular aspect of the discourse. An algorithmic description specifies what the speaker can focus on and how the speaker may change the focus of the discourse as the discourse unfolds. The algorithm allows for a simple focussing mechanism to be constructed: and element in focus, an ordered collection of alternate foci, and a stack of old foci. The data structure for the element in focus is a representation which encodes a limted set of associations between it and other elements from teh discourse as well as from general knowledge.
Resumo:
This thesis confronts the nature of the process of learning an intellectual skill, the ability to solve problems efficiently in a particular domain of discourse. The investigation is synthetic; a computational performance model, HACKER, is displayed. Hacker is a computer problem-solving system whose performance improves with practice. HACKER maintains performance knowledge as a library of procedures indexed by descriptions of the problem types for which the procedures are appropriate. When applied to a problem, HACKER tries to use a procedure from this "Answer Library". If no procedure is found to be applicable, HACKER writes one using more general knowledge of the problem domain and of programming techniques. This new program may be generalized and added to the Answer Library.
Resumo:
SIN and SOLDIER are heuristic programs in LISP which solve symbolic integration problems. SIN (Symbolic INtegrator) solves indefinite integration problems at the difficulty approaching those in the larger integral tables. SIN contains several more methods than are used in the previous symbolic integration program SAINT, and solves most of the problems attempted by SAINT in less than one second. SOLDIER (SOLution of Ordinary Differential Equations Routine) solves first order, first degree ordinary differential equations at the level of a good college sophomore and at an average of about five seconds per problem attempted. The differences in philosophy and operation between SAINT and SIN are described, and suggestions for extending the work presented are made.