74 resultados para Apolipoprotéine AI
Resumo:
The utility of vision-based face tracking for dual pointing tasks is evaluated. We first describe a 3-D face tracking technique based on real-time parametric motion-stereo, which is non-invasive, robust, and self-initialized. The tracker provides a real-time estimate of a ?frontal face ray? whose intersection with the display surface plane is used as a second stream of input for scrolling or pointing, in paral-lel with hand input. We evaluated the performance of com-bined head/hand input on a box selection and coloring task: users selected boxes with one pointer and colors with a second pointer, or performed both tasks with a single pointer. We found that performance with head and one hand was intermediate between single hand performance and dual hand performance. Our results are consistent with previously reported dual hand conflict in symmetric pointing tasks, and suggest that a head-based input stream should be used for asymmetric control.
Resumo:
We introduce a new method to describe, in a single image, changes in shape over time. We acquire both range and image information with a stationary stereo camera. From the pictures taken, we display a composite image consisting of the image data from the surface closest to the camera at every pixel. This reveals the 3-d relationships over time by easy-to-interpret occlusion relationships in the composite image. We call the composite a shape-time photograph. Small errors in depth measurements cause artifacts in the shape-time images. We correct most of these using a Markov network to estimate the most probable front surface, taking into account the depth measurements, their uncertainties, and layer continuity assumptions.
Resumo:
Most reinforcement learning methods operate on propositional representations of the world state. Such representations are often intractably large and generalize poorly. Using a deictic representation is believed to be a viable alternative: they promise generalization while allowing the use of existing reinforcement-learning methods. Yet, there are few experiments on learning with deictic representations reported in the literature. In this paper we explore the effectiveness of two forms of deictic representation and a naive propositional representation in a simple blocks-world domain. We find, empirically, that the deictic representations actually worsen performance. We conclude with a discussion of possible causes of these results and strategies for more effective learning in domains with objects.
Resumo:
The Design Patterns book [GOF95] presents 24 time-tested patterns that consistently appear in well-designed software systems. Each pattern is presented with a description of the design problem the pattern addresses, as well as sample implementation code and design considerations. This paper explores how the patterns from the "Gang of Four'', or "GOF'' book, as it is often called, appear when similar problems are addressed using a dynamic, higher-order, object-oriented programming language. Some of the patterns disappear -- that is, they are supported directly by language features, some patterns are simpler or have a different focus, and some are essentially unchanged.
Resumo:
This paper discusses the hardware foundations of the cryptosystem employed by the Xbox(TM) video game console from Microsoft. A secret boot block overlay is buried within a system ASIC. This secret boot block decrypts and verifies portions of an external FLASH-type ROM. The presence of the secret boot block is camouflaged by a decoy boot block in the external ROM. The code contained within the secret boot block is transferred to the CPU in the clear over a set of high-speed busses where it can be extracted using simple custom hardware. The paper concludes with recommendations for improving the Xbox security system. One lesson of this study is that the use of a high-performance bus alone is not a sufficient security measure, given the advent of inexpensive, fast rapid prototyping services and high-performance FPGAs.
Resumo:
In low-level vision, the representation of scene properties such as shape, albedo, etc., are very high dimensional as they have to describe complicated structures. The approach proposed here is to let the image itself bear as much of the representational burden as possible. In many situations, scene and image are closely related and it is possible to find a functional relationship between them. The scene information can be represented in reference to the image where the functional specifies how to translate the image into the associated scene. We illustrate the use of this representation for encoding shape information. We show how this representation has appealing properties such as locality and slow variation across space and scale. These properties provide a way of improving shape estimates coming from other sources of information like stereo.
Resumo:
Evolutionary algorithms are a common tool in engineering and in the study of natural evolution. Here we take their use in a new direction by showing how they can be made to implement a universal computer. We consider populations of individuals with genes whose values are the variables of interest. By allowing them to interact with one another in a specified environment with limited resources, we demonstrate the ability to construct any arbitrary logic circuit. We explore models based on the limits of small and large populations, and show examples of such a system in action, implementing a simple logic circuit.
Resumo:
A common objective in learning a model from data is to recover its network structure, while the model parameters are of minor interest. For example, we may wish to recover regulatory networks from high-throughput data sources. In this paper we examine how Bayesian regularization using a Dirichlet prior over the model parameters affects the learned model structure in a domain with discrete variables. Surprisingly, a weak prior in the sense of smaller equivalent sample size leads to a strong regularization of the model structure (sparse graph) given a sufficiently large data set. In particular, the empty graph is obtained in the limit of a vanishing strength of prior belief. This is diametrically opposite to what one may expect in this limit, namely the complete graph from an (unregularized) maximum likelihood estimate. Since the prior affects the parameters as expected, the prior strength balances a "trade-off" between regularizing the parameters or the structure of the model. We demonstrate the benefits of optimizing this trade-off in the sense of predictive accuracy.
Resumo:
We present an algorithm that uses multiple cues to recover shading and reflectance intrinsic images from a single image. Using both color information and a classifier trained to recognize gray-scale patterns, each image derivative is classified as being caused by shading or a change in the surface's reflectance. Generalized Belief Propagation is then used to propagate information from areas where the correct classification is clear to areas where it is ambiguous. We also show results on real images.
Resumo:
The goal of low-level vision is to estimate an underlying scene, given an observed image. Real-world scenes (e.g., albedos or shapes) can be very complex, conventionally requiring high dimensional representations which are hard to estimate and store. We propose a low-dimensional representation, called a scene recipe, that relies on the image itself to describe the complex scene configurations. Shape recipes are an example: these are the regression coefficients that predict the bandpassed shape from bandpassed image data. We describe the benefits of this representation, and show two uses illustrating their properties: (1) we improve stereo shape estimates by learning shape recipes at low resolution and applying them at full resolution; (2) Shape recipes implicitly contain information about lighting and materials and we use them for material segmentation.
Resumo:
Binary image classifiction is a problem that has received much attention in recent years. In this paper we evaluate a selection of popular techniques in an effort to find a feature set/ classifier combination which generalizes well to full resolution image data. We then apply that system to images at one-half through one-sixteenth resolution, and consider the corresponding error rates. In addition, we further observe generalization performance as it depends on the number of training images, and lastly, compare the system's best error rates to that of a human performing an identical classification task given teh same set of test images.
Resumo:
Cyclic changes in the shape of a quasi-rigid body on a curved manifold can lead to net translation and/or rotation of the body in the manifold. Presuming space-time is a curved manifold as portrayed by general relativity, translation in space can be accomplished simply by cyclic changes in the shape of a body, without any thrust or external forces.
Resumo:
Classical mechanics is deceptively simple. It is surprisingly easy to get the right answer with fallacious reasoning or without real understanding. To address this problem we use computational techniques to communicate a deeper understanding of Classical Mechanics. Computational algorithms are used to express the methods used in the analysis of dynamical phenomena. Expressing the methods in a computer language forces them to be unambiguous and computationally effective. The task of formulating a method as a computer-executable program and debugging that program is a powerful exercise in the learning process. Also, once formalized procedurally, a mathematical idea becomes a tool that can be used directly to compute results.
Resumo:
We study the frequent problem of approximating a target matrix with a matrix of lower rank. We provide a simple and efficient (EM) algorithm for solving {\\em weighted} low rank approximation problems, which, unlike simple matrix factorization problems, do not admit a closed form solution in general. We analyze, in addition, the nature of locally optimal solutions that arise in this context, demonstrate the utility of accommodating the weights in reconstructing the underlying low rank representation, and extend the formulation to non-Gaussian noise models such as classification (collaborative filtering).
Resumo:
In this paper, we present an approach to discretizing multivariate continuous data while learning the structure of a graphical model. We derive the joint scoring function from the principle of predictive accuracy, which inherently ensures the optimal trade-off between goodness of fit and model complexity (including the number of discretization levels). Using the so-called finest grid implied by the data, our scoring function depends only on the number of data points in the various discretization levels. Not only can it be computed efficiently, but it is also independent of the metric used in the continuous space. Our experiments with gene expression data show that discretization plays a crucial role regarding the resulting network structure.