(Semi-)Predictive Discretization During Model Selection


Autoria(s): Steck, Harald; Jaakkola, Tommi S.
Data(s)

08/10/2004

08/10/2004

25/02/2003

Resumo

In this paper, we present an approach to discretizing multivariate continuous data while learning the structure of a graphical model. We derive the joint scoring function from the principle of predictive accuracy, which inherently ensures the optimal trade-off between goodness of fit and model complexity (including the number of discretization levels). Using the so-called finest grid implied by the data, our scoring function depends only on the number of data points in the various discretization levels. Not only can it be computed efficiently, but it is also independent of the metric used in the continuous space. Our experiments with gene expression data show that discretization plays a crucial role regarding the resulting network structure.

Formato

15 p.

4299414 bytes

910469 bytes

application/postscript

application/pdf

Identificador

AIM-2003-002

http://hdl.handle.net/1721.1/6709

Idioma(s)

en_US

Relação

AIM-2003-002

Palavras-Chave #AI #Discretization #Graphical models