7 resultados para Vantagem competitiva

em Universidade dos Açores - Portugal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação de Mestrado, Gestão de Empresas/MBA, 27 de Janeiro de 2014, Universidade dos Açores.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação de Mestrado em Ciências Económicas e Empresariais.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento, Física, 27 de Novembro de 2013, Universidade dos Açores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Jornadas "Ciência nos Açores- que futuro?", Biblioteca Pública e Arquivo Regional de Ponta Delgada, Largo do Colégio, Ponta Delgada, 7-8 de junho de 2013.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(...) Recentemente, em 2004, H. Michael Damm provou na sua tese de doutoramento a existência de quase-grupos totalmente anti-simétricos para ordens diferentes de 2 e 6. A tabela da imagem define um quase-grupo totalmente anti-simétrico de ordem 10, adaptado de um exemplo apresentado por Damm na sua tese. Esta tabela é o que se designa por quadrado latino: em cada linha e em cada coluna, cada um dos símbolos utilizados devem figurar uma e uma só vez. Os quadrados latinos surgiram pelas mãos de um grande matemático, talvez o maior matemático de todos os tempos: Leonhard Euler (1707-1783). Este tipo de tabelas não é totalmente estranho ao leitor. Se olhar com atenção, encontrará apenas duas diferenças em relação aos tradicionais desafios de Sudoku: não existem as chamadas "regiões" e utiliza-se o 0, para além dos algarismos 1-9. A descoberta de Damm impulsionou o desenvolvimento de um novo algoritmo com o seu nome, que tem a vantagem de apenas utilizar os algarismos tradicionais, do 0 ao 9, e de detetar 100% dos erros singulares e 100% das transposições de algarismos adjacentes. Em relação ao algoritmo de Verhoeff, tem uma implementação mais simples e deteta 100% dos erros fonéticos (por exemplo, quando se escreve 15 em vez de 50, devido à pronúncia semelhante destes números em inglês: "fifteen" e "fifty"). Na imagem, ilustra-se um exemplo de aplicação deste algoritmo para determinar o algarismo de controlo do número 201436571? (o ponto de interrogação representa o algarismo de controlo, por enquanto, desconhecido). (...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado em Educação, especialidade em Administração e Organização Escolar.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(...) A ideia original das circunferências mágicas remonta pelo menos à segunda edição do livro “Magic Squares and Cubes”, de W. S. Andrews. A publicação data de 1917, há quase um século, e conta com contributos de diferentes autores. A secção dedicada às circunferências mágicas é da autoria de Harry A. Sayles. (...) O leitor provavelmente já encontrou um padrão: quando usamos números de 1 a n, a soma dos números dos pontos de intersecção de duas quaisquer circunferências deve ser n+1. No desafio apresentado na Fig. A usamos os números de 1 a 40, logo a soma dos números dos pontos de intersecção de duas quaisquer circunferências deve ser igual a 41! Além disso, 205=5x41 (cada circunferência tem dez números e 5 é metade de 10). A descoberta da solução do desafio da Fig. A é, agora, imediata. Esta é a grande vantagem da Matemática. Depois de descoberto um padrão, tudo se torna mais claro. O sentimento é o mesmo de um míope quando coloca os óculos na cara: passa a ver a realidade com outra nitidez. (...)