24 resultados para Descoberta de fármacos
Resumo:
[...]. Historicamente falando, atribui-se a John Napier (Neper) a descoberta deste número no século XVII (que mais tarde passou a ser conhecido pelo seu nome). Mas só cerca de um século depois, com o desenvolvimento do cálculo infi nitesimal, Euler reconheceu a importância deste número. O símbolo e que é usado para designar este número foi escolhido em homenagem a Euler. [...].
Resumo:
(...) Recentemente, em 2004, H. Michael Damm provou na sua tese de doutoramento a existência de quase-grupos totalmente anti-simétricos para ordens diferentes de 2 e 6. A tabela da imagem define um quase-grupo totalmente anti-simétrico de ordem 10, adaptado de um exemplo apresentado por Damm na sua tese. Esta tabela é o que se designa por quadrado latino: em cada linha e em cada coluna, cada um dos símbolos utilizados devem figurar uma e uma só vez. Os quadrados latinos surgiram pelas mãos de um grande matemático, talvez o maior matemático de todos os tempos: Leonhard Euler (1707-1783). Este tipo de tabelas não é totalmente estranho ao leitor. Se olhar com atenção, encontrará apenas duas diferenças em relação aos tradicionais desafios de Sudoku: não existem as chamadas "regiões" e utiliza-se o 0, para além dos algarismos 1-9. A descoberta de Damm impulsionou o desenvolvimento de um novo algoritmo com o seu nome, que tem a vantagem de apenas utilizar os algarismos tradicionais, do 0 ao 9, e de detetar 100% dos erros singulares e 100% das transposições de algarismos adjacentes. Em relação ao algoritmo de Verhoeff, tem uma implementação mais simples e deteta 100% dos erros fonéticos (por exemplo, quando se escreve 15 em vez de 50, devido à pronúncia semelhante destes números em inglês: "fifteen" e "fifty"). Na imagem, ilustra-se um exemplo de aplicação deste algoritmo para determinar o algarismo de controlo do número 201436571? (o ponto de interrogação representa o algarismo de controlo, por enquanto, desconhecido). (...)
Resumo:
Dissertação de Mestrado, Ciências da Comunicação, 3 de Junho de 2015, Universidade dos Açores.
Resumo:
Entre os dias 28 e 31 do passado mês de outubro, decorreu na Universidade de Coimbra a primeira Conferência Internacional do Espaço Matemático em Língua Portuguesa (CiEMeLP 2015), que reuniu matemáticos de praticamente todos os países de língua oficial portuguesa (...) Foi muito gratificante participar neste encontro e partilhar muitas das problemáticas ligadas ao ensino e à divulgação da matemática com colegas de países como Brasil, Cabo Verde, Moçambique e Timor Leste. Foi interessante constatar que aquilo que nos une é muito superior ao que nos separa. De facto, destaca-se um grande consenso em torno de alguns aspetos essenciais ligados ao ensino da matemática. Participei neste encontro com duas comunicações. A primeira, intitulada “Pisando arte e matemática em Lisboa”, resultou de um trabalho conjunto com Jorge Nuno Silva, Carlos Pereira dos Santos e Alda Carvalho e teve como objetivo apresentar o baralho de cartas da Associação Ludus dedicado às simetrias das calçadas da cidade de Lisboa. (...) A segunda comunicação, “Cruzar fronteiras entre a matemática e a cultura: à descoberta de simetrias na calçada e no artesanato”, resultou de uma parceria com Andreia Hall, da Universidade de Aveiro. Os autores cruzam o trabalho que têm vindo a desenvolver nos últimos anos, nomeadamente o levantamento dos padrões em Calçada Portuguesa, no Arquipélago dos Açores (sites.uac.pt/rteixeira/simetrias/), com a exploração de simetrias em Patchwork e Cerâmica, no âmbito de um leque de cursos de formação para professores realizados em Aveiro. (...)
Resumo:
Fórum Internacional de Pedagogia (FIPED V): "À Descoberta da Investigação", Angra do Heroísmo, Universidade dos Açores, 17 e 18 de abril de 2015.
Resumo:
Fórum Internacional de Pedagogia (FIPED V): "À Descoberta da Investigação", Angra do Heroísmo, Universidade dos Açores, 17 e 18 de abril de 2015.
Resumo:
Fórum Internacional de Pedagogia (FIPED V): "À Descoberta da Investigação", Angra do Heroísmo, Universidade dos Açores, 17 e 18 de abril de 2015.
Resumo:
(...) A ideia original das circunferências mágicas remonta pelo menos à segunda edição do livro “Magic Squares and Cubes”, de W. S. Andrews. A publicação data de 1917, há quase um século, e conta com contributos de diferentes autores. A secção dedicada às circunferências mágicas é da autoria de Harry A. Sayles. (...) O leitor provavelmente já encontrou um padrão: quando usamos números de 1 a n, a soma dos números dos pontos de intersecção de duas quaisquer circunferências deve ser n+1. No desafio apresentado na Fig. A usamos os números de 1 a 40, logo a soma dos números dos pontos de intersecção de duas quaisquer circunferências deve ser igual a 41! Além disso, 205=5x41 (cada circunferência tem dez números e 5 é metade de 10). A descoberta da solução do desafio da Fig. A é, agora, imediata. Esta é a grande vantagem da Matemática. Depois de descoberto um padrão, tudo se torna mais claro. O sentimento é o mesmo de um míope quando coloca os óculos na cara: passa a ver a realidade com outra nitidez. (...)
Resumo:
Mestrado, Ensino de História e de Geografia no 3.º Ciclo do Ensino Básico e no Ensino Secundário, 8 Março de 2016, Universidade dos Açores (Relatório de Estágio).