Modélisation mathématique de la propagation de la malaria.
Contribuinte(s) |
Bélair, Jacques |
---|---|
Data(s) |
19/03/2015
31/12/1969
19/03/2015
18/02/2015
01/12/2014
|
Resumo |
Un modèle mathématique de la propagation de la malaria en temps discret est élaboré en vue de déterminer l'influence qu'un déplacement des populations des zones rurales vers les zones urbaines aurait sur la persistance ou la diminution de l'incidence de la malaria. Ce modèle, sous la forme d'un système de quatorze équations aux différences finies, est ensuite comparé à un modèle analogue mais en temps continu, qui prend la forme d'équations différentielles ordinaires. Une étude comparative avec la littérature récente permet de déterminer les forces et les faiblesses de notre modèle. A mathematical model for the spread of malaria has been developed to determine the influence that a population shift from rural to urban areas may have on the persistence or reduction of the disease. This discrete-time model, a system of fourteen finite-difference equations, is then compared with a continuous time model, a system of ordinary differential equations. A comparative study of recently published models allows a determination of the strengths and weaknesses of our model. |
Identificador | |
Idioma(s) |
fr |
Palavras-Chave | #Malaria #Modélisation #R0 #Stabilité #Équilibre #Malaria #Modeling #Stability #Equilibrium #Mathematics / Mathématiques (UMI : 0405) |
Tipo |
Thèse ou Mémoire numérique / Electronic Thesis or Dissertation |