984 resultados para plant extract


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently, it has been a increasing interest in the antioxidative role of natural products to aid the endogenous protective biological systems against the deleterious effects of oxygen (ROS) and nitrogen (RNS) reactive species. Many antioxidant compounds, naturally occurring from plant sources. Natural antioxidants can protect and prevent the human body from oxidative stress and retard the progress of many diseases in which free radical are involved. Several plants used in the folk medicine to treat certain disorders that are accompanied by inflammation and other pharmacological properties have been proved their attributed properties, such antioxidant activity. Turnera ulmifolia Linn. var. elegans (Turneraceae), frequently employed by population as a medicinal plant, demonstrated antioxidant activity by in vitro and in vivo assays, using its leaf hydroethanolic extract (10%) he in vitro DPPH radical-scanvenging activity showed a strong antioxidant activity (86.57% ± 0.14), similar to Carduus marianus and catequine effects. For the in vivo assays, adult female Wistar rats (n=48) with carbon tetrachloride hepatic injury induced (2,5mL/kg i.p.) were used, Six groups or rats were uses (n=8) [G1 = control (1,25 mL/kg i.p. vehicle); G2 = CCl4 (2,5 mL/kg i.p.); G3 = CCl4 + extract 7 days (500 mg/kg p.o.); G4 = CCl4 + Legalon® 7 days (50 mg/kg p.o.), G5 = CCl4 + extract 21 days (500 mg/kg p.o.) e G6 = CCl4 + Legalon® 21 days (50 mg/kg p.o.)]. The hepatic oxidative injury was evaluated through biochemical parameters [alanine amino transferase (ALT), aspartate amino transferase (AST)] histopathological study, while thiobarbituric acid reactive products (TBAR), glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) levels were used to evaluate proantioxidant parameters. The plant extract tested was found effective as hepatoprotective as evidenced by a decreasing in the ALT and AST activities (p<0.001) and TBAR (plasma, p<0.001 and liver, p<0.001). Levels of GSH (blood, p<0.001 and liver, p<0.001) and antioxidant enzymes [CAT erythrocyte (p<0.05) and hepatic (p<0.01); SOD erythrocyte (p<0.001) and hepatic (p<0.001); GPx erythrocyte (p<0.001) and hepatic (p<0.001)] were also significantly increased. Histopathological changes induced by CCl4 were significantly reduced by the extract treatment. The data obtained were comparable to that of Legalon®, a reference hepatoprotective drug. The results showed that T. ulmifolia leaf extract protects against CCl4 induced oxidative damage. Therefore, this effect must be associated to its antioxidant activity, attributed to the phenolic compounds, present in these extract, which can act as free radical scavengers

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Muita atenção tem sido dada ao desenvolvimento de inseticidas vegetais buscando-se um efetivo controle de ectoparasitas de bovinos, sem prejudicar animais, consumidores e meio ambiente. Este estudo, realizado de abril a julho de 2008, na Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) Pecuária Sudeste, em São Carlos, SP, Brasil, avaliou a eficácia de uma torta comercial de nim (Azadirachta indica) no controle da mosca-dos-chifres (Haematobia irritans) em bovinos. A torta de nim, misturada ao sal mineral na concentração de 2%, foi fornecida a 20 vacas Nelore, durante nove semanas, e sua eficácia foi monitorada através de contagens semanais nos grupos tratado e controle. Infestações individuais foram registradas por meio de fotos digitais em todos os animais de ambos os grupos, e o número de moscas foi, posteriormente, quantificado com o auxílio de um sistema de análise de imagem computadorizado. A quantificação dos componentes da torta de nim, por cromatografia líquida, revelou a presença de azadiractina (421 mg.kg-1) e 3-tigloyl-azadirachtol (151 mg.kg-1). A adição da torta de nim a 2% reduziu o consumo de sal mineral em cerca de 22%. O tratamento com torta de nim a 2% não reduziu as infestações por mosca-dos-chifres em bovinos durante as nove semanas do estudo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trichophyton rubrum is a dermatophyte, which can cause infections in human skin, hair and nail. Pothomorphe umbellata (L.) Miq. (Piperaceae) is a native Brazilian plant, in which phytochemical studies have demonstrated the presence of steroids, 4-nerolidylcatechol, sesquiterpenes and essential oils. The objective of this study was to analyze the in vitro activity of extracts and fractions of P. umbellata on resistant strains of T. rubrum. The microdilution plate method was utilized to test Tr1, H6 and Delta TruMDR2 strains of T rubrum; Delta TruMDR2 strain was obtained from H6 by TruMDR2 gene rupture, which is involved in multiple drugs resistance. The highest antifungal activity to all strains was observed for dichloromethane and hexane fractions of the 70% ethanolic extract which showed minimal inhibitory concentration (MIC) and minimal fungicide concentration (MFC) of 78.13 mu g/mL. This antifungal activity was also obtained by 70% ethanolic extract, which presented MIC and MFC of 78.13 mu g/mL to Delta TruMDR2, whereas the MIC values for Tr1 and H6 were 78.13 and 156.25 mu g/mL, respectively. Our results suggest the potential for future development of new antifungal drugs from P umbellata, especially to strains presenting multiple resistance. (C) 2012 Elsevier Masson SAS. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The modern approach to the development of new chemical entities against complex diseases, especially the neglected endemic diseases such as tuberculosis and malaria, is based on the use of defined molecular targets. Among the advantages, this approach allows (i) the search and identification of lead compounds with defined molecular mechanisms against a defined target (e.g. enzymes from defined pathways), (ii) the analysis of a great number of compounds with a favorable cost/benefit ratio, (iii) the development even in the initial stages of compounds with selective toxicity (the fundamental principle of chemotherapy), (iv) the evaluation of plant extracts as well as of pure substances. The current use of such technology, unfortunately, is concentrated in developed countries, especially in the big pharma. This fact contributes in a significant way to hamper the development of innovative new compounds to treat neglected diseases. The large biodiversity within the territory of Brazil puts the country in a strategic position to develop the rational and sustained exploration of new metabolites of therapeutic value. The extension of the country covers a wide range of climates, soil types, and altitudes, providing a unique set of selective pressures for the adaptation of plant life in these scenarios. Chemical diversity is also driven by these forces, in an attempt to best fit the plant communities to the particular abiotic stresses, fauna, and microbes that co-exist with them. Certain areas of vegetation (Amazonian Forest, Atlantic Forest, Araucaria Forest, Cerrado-Brazilian Savanna, and Caatinga) are rich in species and types of environments to be used to search for natural compounds active against tuberculosis, malaria, and chronic-degenerative diseases. The present review describes some strategies to search for natural compounds, whose choice can be based on ethnobotanical and chemotaxonomical studies, and screen for their ability to bind to immobilized drug targets and to inhibit their activities. Molecular cloning, gene knockout, protein expression and purification, N-terminal sequencing, and mass spectrometry are the methods of choice to provide homogeneous drug targets for immobilization by optimized chemical reactions. Plant extract preparations, fractionation of promising plant extracts, propagation protocols and definition of in planta studies to maximize product yield of plant species producing active compounds have to be performed to provide a continuing supply of bioactive materials. Chemical characterization of natural compounds, determination of mode of action by kinetics and other spectroscopic methods (MS, X-ray, NMR), as well as in vitro and in vivo biological assays, chemical derivatization, and structure-activity relationships have to be carried out to provide a thorough knowledge on which to base the search for natural compounds or their derivatives with biological activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is well known that histamine is found in high concentration in mast cell granules(1). The histamine content of these granules may be released to the extracellular space if an appropriate stimulus is provided(2). Besides histamine, other preformed active substances like enzymes, chemotatic factors and proteoglycans, as well as newly generated mediators like eicosanoids, platelet activating factor and adenosine are released during the secretion process of mast cells(3). The activation of mast cell degranulation has been associated with a number of pathologic disorders, most frequently, diseases derived from the atopic state(4). It is now evident that mast cells are the primary effector cells in the early reaction in both allergic and non-allergic asthma(5,6), although some authors doubt that the late reaction of asthma is a mast cell dependent event(6). Other studies point towards basophils as cellular elements involved in the secondary phase of inflammation in allergic diseases(7). Secretion would depend on a histamine releasing factor, and on the presence of IgE on the basophil's surface(8). There is also evidence suggesting involvement of mast cells in some non-allergic inflammatory processes like arthritis(9). The pharmacological management of these diseases basically consists in the use of methylxantines, beta 2-adrenergic agonists, glucocorticoids, sodium cromoglycate-like drugs, anticholinergic and antihistaminic H 1 antagonists(10). Their therapeutic effects include bronchodilatation, receptor and physiological antagonism, prevention of inflammatory responses induced by secondary cells, and finally, inhibition of mast cell activation(11). This review is concerned with compounds having inhibitory action on mast cell activation, and their possible importance on the pathophysiology of mast cell-related diseases.