942 resultados para 060106 Cellular Interactions (incl. Adhesion Matrix Cell Wall)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most multimeric lectins are adhesion molecules, promoting attachment and spreading on surface glycodeterminants. In addition, some lectins have counter-adhesion properties, detaching already spread cells which then acquire round or spindle-formed cell shapes. Since lectin-mediated adhesion and detachment is observed in haemocyte-like Drosophila cells, which have haemomucin as the major lectin-binding glycoprotein, the two opposite cell behaviours may be the result of lectin-mediated receptor rearrangements on the cell surface. To investigate oligomeric lectins as a possible extracellular driving force affecting cell shape changes, we examined lectin-mediated reactions in lepidopteran haemocytes after cytochalasin D-treatment and observed that while cell-spreading was dependent on F-actin, lectin-uptake was less dependent on F-actin. We propose a model of cell shape changes involving a dynamic balance between adhesion and uptake reactions. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural isolates and laboratory strains of West Nile virus (WNV) and Japanese encephalitis virus (JEV) were attenuated for neuroinvasiveness in mouse models for flavivirus encephalitis by serial passage in human adenocarcinoma (SW13) cells. The passage variants displayed a small-plaque phenotype, augmented affinity for heparin-Sepharose, and a marked increase in specific infectivity for SW13 cells relative to the respective parental viruses, while the specific infectivity for Vero cells was not altered. Therefore, host cell adaptation of passage variants was most likely a consequence of altered receptor usage for virus attachment-entry with the involvement of cell surface glycosaminoglycans (GAG) in this process. In vivo blood clearance kinetics of the passage variants was markedly faster and viremia was reduced relative to the parental viruses, suggesting that affinity for GAG (ubiquitously present on cell surfaces and extracellular matrices) is a key determinant for the neuroinvasiveness of encephalitic flaviviruses. A difference in pathogenesis between WNV and JEV, which was reflected in more efficient growth in the spleen and liver of the WNV parent and passage variants, accounted for a less pronounced loss of neuroinvasiveness of GAG binding variants of WNV than JEV. Single gain-of-net-positive-charge amino acid changes at E protein residue 49, 138, 306, or 389/390, putatively positioned in two clusters on the virion surface, define molecular determinants for GAG binding and concomitant virulence attenuation that are shared by the JEV serotype flaviviruses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Classical cadherin adhesion molecules are fundamental determinants of cell-cell recognition that function in cooperation with the actin cytoskeleton. Productive cadherin-based cell recognition is characterized by a distinct morphological process of contact zone extension, where limited initial points of adhesion are progressively expanded into broad zones of contact. We recently demonstrated that E-cadherin ligation recruits the Arp2/3 actin nucleator complex to the plasma membrane in regions where cell contacts are undergoing protrusion and extension. This suggested that Arp2/3 might generate the protrusive forces necessary for cell surfaces to extend upon one another during contact assembly. We tested this hypothesis in mammalian cells by exogenously expressing the CA region of N-WASP. This fragment, which potently inhibits Arp2/3-mediated actin assembly in vitro, also effectively reduced actin assembly at cadherin adhesive contacts. Blocking Arp2/3 activity by this strategy profoundly reduced the ability of cells to extend cadherin adhesive contacts but did not affect cell adhesiveness. These findings demonstrate that Arp2/3 activity is necessary for cells to efficiently extend and assemble cadherin-based adhesive contacts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bioactivity of three methacryloyloxyethyl phosphate (MOEP) grafted expanded polytetrafluoroethylene (ePTFE) membranes with varying surface coverage as well as unmodified ePTFE was investigated through a series of in vitro tests: calcium phosphate (CaP) growth in simulated body fluid (SBF), serum protein adsorption, and a morphology and attachment study of human osteoblast-like SaOS-2 cells. The graft copolymers were prepared by means of gamma irradiation induced grafting and displayed various surface morphologies and wettabilities depending on the grafting conditions used. Unmodified ePTFE did not induce nucleation of Cal? minerals, whereas all the grafted membranes revealed the growth of Cal? minerals after 7 days immersion in SBF. The sample with lowest surface grafting yield (24% coverage), a smooth graft morphology and relatively high hydrophobicity (theta(adv) = 120 degrees, theta(rec) = 80 degrees) showed carbonated hydroxyapatite growth covering the surface. On the other hand, the samples with high surface grafting yield (76% and 100%), a globular graft morphology and hydrophilic surfaces (theta(adv) = 60 degrees and 80 degrees, theta(rec) = 25 degrees and 15 degrees, respectively) exhibited irregular growth of non-apatitic Cap minerals. Irreversibly adsorbed protein measured after a 1 h immersion in serum solution was quantified by the amount of nitrogen on the surface using XPS, as well as by weight increase. All grafted membranes adsorbed 3-6 times more protein than the unmodified membrane. The sample with the highest surface coverage adsorbed the most protein. Osteoblast-like SaOS-2 cells cultured for 3 h revealed significantly higher levels of cell attachment on all grafted membranes compared to unmodified ePTFE. Although the morphology of the cells was heterogeneous, in general, the higher grafted surfaces showed a much better cell morphology than both the low surface-grafted and the control unmodified sample. The suite of in vitro tests confirms that a judicious choice of grafted monomer such as the phosphate-containing methacrylate monomer (MOEP) significantly improves the bioactivity of ePTFE in vitro. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small GTPases of the Ras superfamily play critical roles in epithelial biogenesis. Many key morphogenetic functions occur when small GTPases act at epithelial junctions, where they mediate an increasingly complex interplay between cell-cell adhesion molecules and fundamental cellular processes, such as cytoskeletal activity, polarity and trafficking. Important recent advances in this field include the role of additional members of the Ras superfamily in cell-cell contact stability and the capacity for polarity determinants to regulate small GTPase signalling. Interestingly, small GTPases may participate in the cross-talk between different adhesive receptors: in tissues classical cadherins can selectively regulate other junctions through cell signalling rather than through a global influence on cell-cell cohesion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conditional knockout of the KAP3 subunit from the kinesin motor KIF3 alters tissue patterning and causes abnormal proliferation of neural progenitor cells in the mouse brain. Impaired transport of N-cadherin to the surface of these cells may be one explanation for how such defects arise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forced expression of HOXA1 is sufficient to stimulate oncogenic transformation of immortalized human mammary epithelial cells and subsequent tumor formation. We report here that the expression and transcriptional activity of HOXA1 are increased in mammary carcinoma cells at full confluence. This confluence-dependent expression of HOXA1 was abrogated by incubation of cells with EGTA to produce loss of intercellular contact and rescued by extracellular addition of Ca2+. Increased HOXA1 expression at full confluence was prevented by an E-cadherin function-blocking antibody and attachment of non-confluent cells to a substrate by homophilic ligation of E-cadherin increased HOXA1 expression. E-cadherin-directed signaling increased HOXA1 expression through Rac1. Increased HOXA1 expression consequent to E-cadherin-activated signaling decreased apoptotic cell death and was required for E-cadherin-dependent anchorage-independent proliferation of human mammary carcinoma cells. HOXA1 is therefore a downstream effector of E-cadherin-directed signaling required for anchorage-independent proliferation of mammary carcinoma cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sustained delivery of heparin to the localized adventitial surface of grafted blood vessels has been shown to prevent the vascular smooth muscle cell (VSMC) proliferation that can lead to graft occlusion and failure. In this study heparin was incorporated into electrospun poly(epsilon-caprolactone) (PCL) fiber mats for assessment as a controlled delivery device. Fibers with smooth surfaces and no bead defects could be spun from polymer solutions with 8% w/v PCL in 7:3 dichloromethane: methanol. A significant decrease in fiber diameter was observed with increasing heparin concentration. Assessment of drug loading, and imaging of fluorescently labeled heparin showed homogenous distribution of heparin throughout the fiber mats. A total of approximately half of the encapsulated heparin was released by diffusional control from the heparin/PCL fibers after 14 days. The fibers did not induce an inflammatory response in macrophage cells in vitro and the released heparin was effective in preventing the proliferation of VSMCs in culture. These results suggest that electrospun PCL fibers are a promising candidate for delivery of heparin to the site of vascular injury. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Functional interactions between classical cadherins and the actin cytoskeleton involve diverse actin activities, including filament nucleation, cross-linking, and bundling. In this report, we explored the capacity of Ena/VASP proteins to regulate the actin cytoskeleton at cadherin-adhesive contacts. We extended the observation that Ena/vasodilator-stimulated phosphoprotein (VASP) proteins localize at cell-cell contacts to demonstrate that E-cadherin homophilic ligation is sufficient to recruit Mena to adhesion sites. Ena/VASP activity was necessary both for F-actin accumulation and assembly at cell-cell contacts. Moreover, we identified two distinct pools of Mena within individual homophilic adhesions that cells made when they adhered to cadherin-coated substrata. These Mena pools localized with Arp2/3-driven cellular protrusions as well as at the tips of cadherin-based actin bundles. Importantly, Ena/VASP activity was necessary for both modes of actin activity to be expressed. Moreover, selective depletion of Ena/VASP proteins from the tips of cadherin-based bundles perturbed the bundles without affecting the protrusive F-actin pool. We propose that Ena/VASP proteins may serve as higher order regulators of the cytoskeleton at cadherin contacts through their ability to modulate distinct modes of actin organization at those contacts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluates the pro-inflammatory response to the thermoplastic biopolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) through the analysis of cellular responses in vitro. The murine macrophage RAW264.7 cell line was cultured on solvent cast PHBV films, which was found to induce pro-inflammatory activity that required direct contact between the material and the macrophages. The identity of the pro-inflammatory stimulus was determined by culturing bone marrow-derived macrophages from bacterial lipopolysaccharide (LPS) hyporesponsive C3H/HeJ mice and CpG non-responsive TLR9-/- mice on PHBV. The lack of a pro-inflammatory response by the C3H/HeJ cells indicates that the pro-inflammatory agent present within PHBV is predominately LPS while the TLR9-/- macrophages confirmed that CpG-containing bacterial DNA is unlikely to contribute to the activity. A series of purification procedures was evaluated and one procedure was developed that utilized hydrogen peroxide treatment in solution. The optimized purification was found to substantially reduce the pro-inflammatory response to PHBV without adversely affecting either the molecular structure or molecular weight of the material thereby rendering it more amenable for use as a biomaterial in vivo. Crown Copyright (c) 2006 Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To date, alpha-catenin has been best understood as an important cytoplasmic component of the classical cadherin complex responsible for cell-cell adhesion. By virtue of its capacity to bind F-actin, alpha-catenin was commonly envisaged to support cadherin function by coupling the adhesion receptor to the actin cytoskeleton. But is alpha-catenin solely the cadherin's handmaiden? A range of recent developments suggest, instead, that its biological activity is much more complex than previously appreciated. Evidence from cellular systems and model organisms demonstrates a clear, often dramatic, role for alpha-catenin in tissue organization and morphogenesis. The morphogenetic impact of alpha-catenin reflects its capacity to mediate functional cooperation between cadherins and the actin cytoskeleton, but is not confined to this. alpha-Catenin has a role in regulating cell proliferation and cadherin-independent pools of alpha-catenin may contribute to its functional impact.