917 resultados para Mild cognitive impairment, Dementia, Depression, n-3 Fatty acids, EPA, DHA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research has established that docosahexaenoic acid (DHA), a long-chain omega-3 polyunsaturated fatty acid (PUFA), plays a fundamental role in brain structure and function. Epidemiological and cross-sectional studies have also identified a role for long-chain omega-3 PUFA, which includes DHA, eicosapentaenoic acid, and docosapentaenoic acid, in the etiology of depression. In the past ten years, there have been 12 intervention studies conducted using various preparations of longchain omega-3 PUFA in unipolar and bipolar depression. The majority of these studies administered long-chain omega-3 PUFA as an adjunct therapy. The studies have been conducted over 4 to 16 weeks of intervention and have often included small cohorts. In four out of the seven studies conducted in depressed individuals and in two out of the five studies in bipolar patients, individuals have reported a positive outcome following supplementation with ethyl-eicosapentaenoic acid or fish oil containing long-chain omega-3 PUFA. In the three trials that researched the influence of DHA-rich preparations, no significant effects were reported. The mechanisms that have been invoked to account for the benefits of long-chain omega-3 PUFA in depression include reductions in prostaglandins derived from arachidonic acid, which lead to decreased brain-derived neurotrophic factor levels and/or alterations in blood flow to the brain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present randomized, placebo-controlled, double-blind, parallel-groups clinical trial examined the effects of fish oil and multivitamin supplementation on the incorporation of n-3 and n-6 fatty acids into red blood cells. Healthy adult humans (n = 160) were randomized to receive 6 g of fish oil, 6 g of fish oil plus a multivitamin, 3 g of fish oil plus a multivitamin or a placebo daily for 16 weeks. Treatment with 6 g of fish oil, with or without a daily multivitamin, led to higher eicosapentaenoic acid (EPA) composition at endpoint. Docosahexaenoic acid (DHA) composition was unchanged following treatment. The long chain LC n-3 PUFA index was only higher, compared to placebo, in the group receiving the combination of 6 g of fish oil and the multivitamin. Analysis by gender revealed that all treatments increased EPA incorporation in females while, in males, EPA was only significantly increased by the 6 g fish oil multivitamin combination. There was considerable individual variability in the red blood cell incorporation of EPA and DHA at endpoint. Gender contributed to a large proportion of this variability with females generally showing higher LC n-3 PUFA composition at endpoint. In conclusion, the incorporation of LC n-3 PUFA into red blood cells was influenced by dosage, the concurrent intake of vitamin/minerals and gender.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Omega-3 (ω-3) fatty acids are one of the two main families of long chain polyunsaturated fatty acids (PUFA). The main omega-3 fatty acids in the mammalian body are α-linolenic acid (ALA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Central nervous tissues of vertebrates are characterized by a high concentration of omega-3 fatty acids. Moreover, in the human brain, DHA is considered as the main structural omega-3 fatty acid, which comprises about 40% of the PUFAs in total. DHA deficiency may be the cause of many disorders such as depression, inability to concentrate, excessive mood swings, anxiety, cardiovascular disease, type 2 diabetes, dry skin and so on. On the other hand, zinc is the most abundant trace metal in the human brain. There are many scientific studies linking zinc, especially excess amounts of free zinc, to cellular death. Neurodegenerative diseases, such as Alzheimer's disease, are characterized by altered zinc metabolism. Both animal model studies and human cell culture studies have shown a possible link between omega-3 fatty acids, zinc transporter levels and free zinc availability at cellular levels. Many other studies have also suggested a possible omega-3 and zinc effect on neurodegeneration and cellular death. Therefore, in this review, we will examine the effect of omega-3 fatty acids on zinc transporters and the importance of free zinc for human neuronal cells. Moreover, we will evaluate the collective understanding of mechanism(s) for the interaction of these elements in neuronal research and their significance for the diagnosis and treatment of neurodegeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Consumption of long-chain omega-3 fatty acids is known to decrease the risk of major cardiovascular events. Lipases, a class of triacylglycerol hydrolases, have been extensively tested to concentrate omega-3 fatty acids from fish oils, under mild enzymatic conditions. However, no lipases with preference for omega-3 fatty acids selectivity have yet been discovered or developed. In this study we performed an exhaustive computational study of substrate-lipase interactions by docking, both covalent and non-covalent, for 38 lipases with a large number of structured triacylglycerols containing omega-3 fatty acids. We identified some lipases that have potential to preferentially hydrolyze omega-3 fatty acids from structured triacylglycerols. However omega-3 fatty acid preferences were found to be modest. Our study provides an explanation for absence of reports of lipases with omega-3 fatty acid hydrolyzing ability and suggests methods for developing these selective lipases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: the potential pathogenicity of free radicals may have a pivotal role in ulcerative colitis. Fish oil omega-3 fatty acids exert anti-inflammatory effects on patients with ulcerative colitis (UC), but the precise mechanism of the action of fish oil on oxidative stress is still controversial. The aim of the present work was to verify the blood oxidative stress in patients with UC and determine whether the association of sulfasalazine to fish oil omega-3 fatty acids is more effective than isolated use of sulfasalazine to reduce the oxidative stress.METHODS:, Nine patients (seven female and two male; me. an age = 40 +/- 11 y) with mild or moderate active UC were studied in a randomized crossover design. In addition to their usual medication (2 g/d of sulfasalazine), they received fish oil omega-3 fatty acids (4.5 g/d) or placebo for 2-mo treatment periods that were separated by 2 mo, when they only received sulfasalazine. Nine healthy individuals served as control subjects to study the oxidative stress status. Disease activity was assessed by laboratory indicators (C-reactive protein, alpha(1)-acid glycoprotein, alpha(1)-antitrypsin, erythrocyte sedimentation rate, albumin, hemoglobin, and platelet count), sigmoidoscopy, and histology scores. Analysis of oxidative stress was assessed by plasma chemiluminescence and erythrocyte lipid peroxidation, both induced by tert butyl hydroperoxide (t-BuOOH) and by plasma malondialdehyde. Antioxidant status was assayed by total plasma antioxidant capacity (TRAP) and microsomal lipid peroxidation inhibition (LPI). Superoxide dismutase (SOD) and catalase erythrocyte enzymatic activities were also determined.RESULTS: No significant changes were observed in any laboratory indicator or in the sigmoidoscopy or histology scores, with the exception of erythrocyte sedimentation rate, which decreased with both treatments. Oxidative stress was demonstrated by significant decreases in TRAP and LPI levels, increased chemiluminescence induced by t-BuOOH, and higher SOD activity in patients with UC. Treatment with fish oil omega-3 fatty acids reverted the chemiluminescence induced by t-BuOOH and LPI to baseline levels but that did not occur when patients received only sulfasalazine. Levels of plasma malondialdehyde, erythrocyte lipid peroxidation, and catalase were not different from those in the control group.CONCLUSIONS: the results indicated that plasma oxidative stress occurs in patients with UC, and there was a significant decrease when the patients used sulfasalazine plus fish oil omega-3 fatty acids. However, there was no improvement in most laboratory indicators, sigmoidoscopy, and histology scores. The results suggested that omega-3 fatty acids may act as free radical scavengers protecting the patients against the overall effect of oxidative stress. (C)Elsevier B.V. 2003.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fish oil omega-3 fatty acids exert antiinflammatory effects on patients with ulcerative colitis. However, a comparative study in patients with mild to moderate ulcerative colitis receiving only sulfasalazine or omega-3 fatty acids has not been performed. We sought to detect changes in the inflammatory disease activity with the use of either fish oil omega-3 fatty acids or sulfasalazine in patients with ulcerative colitis. Ten patients (five male, five female; mean age = 48 +/- 12 y) with mild to moderate active ulcerative colitis were investigated in a randomized cross-over design. They received either sulfasalazine (2 g/d) or omega-3 fatty acids (5.4 g/d) for 2 mo. Disease activity was assessed by clinical and laboratory indicators, sigmoidoscopy, histology, and whole-body protein turnover (with N-15-glycine). Treatment with w-3 fatty acids resulted in greater disease activity as detected by a significant increase in platelet count, erythrocyte sedimentation rate, C-reactive protein, and total fecal nitrogen excretion. No major changes in protein synthesis and breakdown were observed during either treatment. In conclusion, treatment with sulfasalazine is superior to treatment with omega-3 fatty acids in patients with mild to moderate active ulcerative colitis. Nutrition 2000;16:87-901 (C) Elsevier B.V. 2000.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE:
Patients with type 2 diabetes mellitus (T2DM) are at increased risk of developing cardiovascular disease, largely as a result of defective production of cardioprotective nitric oxide and a concomitant rise in oxidative stress. Dietary interventions that could reverse this trend would be extremely beneficial. Here we investigated whether dietary n-3 polyunsaturated fatty acid (n-3 PUFA) supplementation positively affected platelet nitroso-redox imbalance.
RESEARCH DESIGN AND METHODS:
We randomized hypertensive T2DM patients (T2DM HT; n = 22) and age-and-sex matched hypertensive study participants without diabetes (HT alone; n = 23) in a double-blind, crossover fashion to receive 8 weeks of n-3 PUFAs (1.8 g eicosapentaenoic acid and 1.5 g docosahexaenoic acid) or identical olive oil capsules (placebo), with an intervening 8-week washout period. Platelet nitrite and superoxide were measured and compared before and after treatment; 8-isoprostane was determined by ELISA and subcellular compartmentalization of the NAD(P)H oxidase subunit p47-phox examined by Western blotting.
RESULTS:
The n-3 PUFA supplementation reduced 8-isoprostane and superoxide levels in platelets from T2DM HT, but not HT alone, participants, without effect on nitrite production. This coincided with a significant decrease in p47-phox membrane localization and a similar reduction in superoxide to that achieved with apocynin. At baseline, a subcohort of T2DM HT and HT alone participants showed evidence of nitric oxide synthase (NOS)-derived superoxide production, indicating defective enzymatic activity. This was reversed significantly in T2DM HT participants after treatment, demonstrating improved NOS function.
CONCLUSIONS:
Our finding that n-3 PUFAs diminish platelet superoxide production in T2DM HT patients in vivo suggests a therapeutic role for these agents in reducing the vascular-derived oxidative stress associated with diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long-chain n-3 polyunsaturated fatty acids are found in oily fish and in fish oils and similar preparations. Substantial evidence from epidemiological and case-control studies indicates that consumption of fish, oily fish and long-chain n-3 fatty acids reduces risk of cardiovascular mortality. Secondary prevention studies using long-chain n-3 fatty acids in patients post-myocardial infarction have shown a reduction in total and cardiovascular mortality with an especially potent effect on sudden death. Long-chain n-3 fatty acids have been shown to beneficially modify a range of cardiovascular risk factors, which may result in primary cardiovascular prevention. However, reduced non-fatal and fatal events and a reduction in sudden death probably involve other mechanisms. Reduced thrombosis following long-chain n-3 fatty acids may play a role. A decrease in arrhythmias is a favoured mechanism of action of long-chain n-3 fatty acids and is supported by cell culture and animal studies. However human trials using implantable cardiac defibrillators have produced inconsistent findings and a recent meta-analysis does not support this mechanism of action. An alternative mechanism of action may be stabilisation of atherosclerotic plaques by long-chain n-3 fatty acids. This is suggested by one published human study which showed that incorporation of long-chain n-3 fatty acids into plaques collected at carotid endarterectomy resulted in fewer macrophages in the plaque and a morphology indicative of increased stability. These findings are supported from observations in an animal model and suggest that the primary effect of long-chain n-3 fatty acids might be on macrophages within the plaque.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Greatly increasing dietary flaxseed oil [rich in the n-3 polyunsaturated fatty acid (PUFA) alpha-linolenic acid (ALA)] or fish oil [rich in the long-chain n-3 PUFAs eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids] can reduce markers of immune cell function. The effects of more modest doses are unclear, and it is not known whether ALA has the same effects as its long-chain derivatives. Objective: The objective was to determine the effects of enriching the diet with ALA or EPA+DHA on immune outcomes representing key functions of human neutrophils, monocytes, and lymphocytes. Design: In a placebo-controlled, double-blind, parallel study, 150 healthy men and women aged 25-72 y were randomly assigned to I of 5 interventions: placebo (no additional n-3 PUFAs), 4.5 or 9.5 g ALA/d, and 0.77 or 1.7 g EPA+DHA/d for 6 mo. The n-3 PUFAs were provided in 25 g fat spread plus 3 oil capsules. Blood samples were taken at 0, 3, and 6 mo. Results: The fatty acid composition of peripheral blood mononuclear cell phospholipids was significantly different in the groups with higher intakes of ALA or EPA+DHA. The interventions did not alter the percentages of neutrophils or monocytes engaged in phagocytosis of Escherichia coli or in phagocytic activity, the percentages of neutrophils or monocytes undergoing oxidative burst in response to E. coli or phorbol ester, the proliferation of lymphocytes in response to a T cell mitogen, the production of numerous cytokines by monocytes and lymphocytes, or the in vivo delayed-type hypersensitivity response. Conclusion: An intake of f less than or equal to9.5 g ALA/d or less than or equal to1.7 g EPA+DHA/d does not alter the functional activity of neutrophils, monocytes, or lymphocytes, but it changes the fatty acid composition of mononuclear cells.