43 resultados para HANTAVIRUS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hantaviruses are one of the five genera of the vector-borne virus family Bunyaviridae. While other members of the family are transmitted via arthropods, hantaviruses are carried and transmitted by rodents and insectivores. Occasional transmission to humans occurs via inhalation of aerosolized rodent excreta. When transmitted to man hantaviruses cause hemorrhagic fever with renal syndrome (HFRS, in Eurasia, mortality ~10%) and hantavirus cardiopulmonary syndrome (HCPS, in the Americas, mortality ~40%). The single-stranded, negative-sense RNA genome of hantaviruses is in segments S, M and L that respectively encode for nucleocapsid (N), glycoproteins Gn and Gc, and RNA-dependent RNA-polymerase (RdRp or L protein). The genome segments, encapsidated by N protein to form ribonucleoprotein (RNP), are enclosed inside a lipid envelope decorated by spikes formed of Gn and Gc. The focus of this study was to understand the mechanisms and interactions through which the virion is formed and maintained. We observed that when extracted from virions both Gn and Gc favor homo- over hetero-oligomerization. The minimal glycoprotein complexes extracted from virion by detergent were observed, by using ultracentrifugation and gel filtration, to be tetrameric Gn and homodimeric Gc. These results led us to suggest a model where tetrameric Gn complexes are interconnected through homodimeric Gc units to form the grid-like surface architecture described for hantaviruses. This model was found to correlate with the three-dimensional (3D) reconstruction of virion surface created using cryo-electron tomography (cryo-ET). The 3D-density map showed the spike complex formed of Gn and Gc to be 10 nm high and to display a four-fold symmetry with dimensions of 15 nm times 15 nm. This unique square-shaped complex on a roughly round virion creates a hitch for the assembly, since a sphere cannot be broken into rectangles. Thus additional interactions are likely required for the virion assembly. In cryo-ET we observed that the RNP makes occasional contacts to the viral membrane, suggesting an interaction between the spike and RNP. We were able to demonstrate this interaction using various techniques, and showed that both Gn and Gc contribute to the interaction. This led us to suggest that in addition to the interactions between Gn and Gc, also the interaction between spike and RNP is required for assembly. We found galectin-3 binding protein (referred to as 90K) to co-purify with the virions and showed an interaction between 90K and the virion. Analysis of plasma samples taken from patients hospitalized for Puumala virus infection showed increased concentrations of 90K in the acute phase and the increased 90K level was found to correlate with several parameters that reflect the severity of acute HFRS. The results of these studies confirmed, but also challenged some of the dogmas on the structure and assembly of hantaviruses. We confirmed that Gn and RNP do interact, as long assumed. On the other hand we demonstrated that the glycoproteins Gn and Gc exist as homo-oligomers or appear in large hetero-oligomeric complexes, rather than form primarily heterodimers as was previously assumed. This work provided new insight into the structure and assembly of hantaviruses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current knowledge of the pathogenic hantavirus indicates that wild rodents are its primary natural reservoir. Specific primers to detect the presence of viral genomes were developed using an SYBR-Green-based real-time RT-PCR protocol. One hundred sixty-four rodents native to the Atlantic Forest biome were captured in So Paulo State, Brazil, and their tissues were tested. The presence of hantavirus RNA was detected in sixteen rodents: three specimens of Akodon montensis, three of Akodon cursor, two of Necromys lasiurus, one of Juliomys sp., one of Thaptomys nigrita, five of Oligoryzomys nigripes, and one of Oryzomys sp. This SYBR Green real-time RT-PCR method for detection of hantavirus may be useful for surveying hantaviruses in Brazil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hantaviruses belong to the Bunyaviridae family, which consists of vector-borne viruses. These viruses can provoke two infection types: hemorrhagic fever with renal syndrome (HFRS) - which occurs in the Old World - and hantavirus cardiopulmonary syndrome (HCPS) - an emergent zoonosis that can be found in many countries of the western hemisphere. Rodents are hantavirus reservoirs and each species seems to host a different virus type. Humans acquire the infection by inhaling contaminated aerosol particles eliminated by infected animals. The factors involved in the emergence of hantavirus infections in the human population include ecological modifications and changes in human activities. The most important risk factor is contact between man and rodents, as a result of agricultural, forestry or military activities. Rodent control remains the primary strategy for preventing hantavirus diseases, including via health education and hygienic habits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: To compare modes and sources of infection and clinical and biosafety aspects of accidental viral infections in hospital workers and research laboratory staff reported in scientific articles. Methods: PubMed, Google Scholar, ISI Web of Knowledge, Scirus, and Scielo were searched (to December 2008) for reports of accidental viral infections, written in English, Portuguese, Spanish, or German; the authors' personal file of scientific articles and references from the articles retrieved in the initial search were also used. Systematic review was carried out with inclusion criteria of presence of accidental viral infection's cases information, and exclusion criteria of absence of information about the viral etiology, and at least probable mode of infection.Results: One hundred and forty-one scientific articles were obtained, 66 of which were included in the analysis. For arboviruses, 84% of the laboratory infections had aerosol as the source; for alphaviruses alone, aerosol exposure accounted for 94% of accidental infections. of laboratory arboviral infections, 15.7% were acquired percutaneously, whereas 41.6% of hospital infections were percutaneous. For airborne viruses, 81% of the infections occurred in laboratories, with hantavirus the leading causative agent. Aerosol inhalation was implicated in 96% of lymphocytic choriomeningitis virus infections, 99% of hantavirus infections, and 50% of coxsackievirus infections, but infective droplet inhalation was the leading mode of infection for severe acute respiratory syndrome coronavirus and the mucocutaneous mode of infection was involved in the case of infection with influenza B. For blood-borne viruses, 92% of infections occurred in hospitals and 93% of these had percutaneous mode of infection, while among laboratory infections 77% were due to infective aerosol inhalation. Among blood-borne virus infections there were six cases of particular note: three cases of acute hepatitis following hepatitis C virus infection with a short period of incubation, one laboratory case of human immunodeficiency virus infection through aerosol inhalation, one case of hepatitis following hepatitis G virus infection, and one case of fulminant hepatitis with hepatitis B virus infection following exposure of the worker's conjunctiva to hepatitis B virus e antigen-negative patient saliva. of the 12 infections with viruses with preferential mucocutaneous transmission, seven occurred percutaneously, aerosol was implicated as a possible source of infection in two cases, and one atypical infection with Macacine herpesvirus 1 with fatal encephalitis as the outcome occurred through a louse bite. One outbreak of norovirus infection among hospital staff had as its probable mode of infection the ingestion of inocula spread in the environment by fomites.Conclusions: The currently accepted and practiced risk analysis of accidental viral infections based on the conventional dynamics of infection of the etiological agents is insufficient to cope with accidental viral infections in laboratories and to a lesser extent in hospitals, where unconventional modes of infection are less frequently present but still have relevant clinical and potential epidemiological consequences. Unconventional modes of infection, atypical clinical development, or extremely severe cases are frequently present together with high viral loads and high virulence of the agents manipulated in laboratories. In hospitals by contrast, the only possible association of atypical cases is with the individual resistance of the worker. Current standard precaution practices are insufficient to prevent most of the unconventional infections in hospitals analyzed in this study; it is recommended that special attention be given to flaviviruses in these settings. (C) 2011 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Síndrome Pulmonar por Hantavírus (SPH) vem sendo diagnosticada na Amazônia brasileira desde 1995. Até dezembro de 2010 já foram diagnosticados 289 casos na Amazônia brasileira, registrados nos estados do Mato Grosso, Pará, Maranhão, Amazonas e Rondônia. O objetivo geral do presente estudo foi caracterizar geneticamente cepas de hantavirus circulantes nesses estados. Foram utilizadas amostras de vísceras de roedores silvestres positivos para anticorpos IgG contra hantavírus, capturados em estudos ecoepidemiológicos, realizados nos municípios de Itacoatiara/AM, Alto Paraíso/RO e Campo Novo do Parecis/MT, e soro/sangue de casos humanos de SPH provenientes dos municípios da área de influência da BR-163, nos estados do Pará e Mato Grosso, Tomé-Açu/PA, Tangará da Serra/MT, além de pool de vísceras de um óbito procedente de Anajatuba/MA. As amostras foram submetidas à extração de RNA viral, seguida das reações de RT-Hemi-Nested-PCR para amostras de roedores, RT-Nested-PCR para amostras de humanos e sequenciamento nucleotídico, utilizando o método de Sanger e o pirossequenciamento, sendo, posteriormente, verificados quanto a aspectos como, identidade (BLAST search), similaridade (SimPlot) e homologia nucleotídica e aminoacídica com outros hantavírus (Clustal W). Foram obtidas as sequências parciais dos hantavírus em cinco roedores da espécie Oligoryzomys microtis (n=2 de Itacoatiara/AM; n=3 de Alto Paraíso/RO) e em oito amostras de humanos (n=1 de Tomé-Açu/PA; n=1 de Altamira/Cachoeira da Serra; n=1 de Novo Progresso/PA; n=1 de Guarantã do Norte/MT; n=1 de Anajatuba/MA e n=3 de Altamira/Castelo dos Sonhos). Com a utilização da estratégia do pirossequenciamento foram obtidas as sequências completas do gene N, S-RNA dos hantavírus em três roedores (n=2 de Alto Paraíso/RO e n=1 de Campo Novo do Parecis/MT) e dois casos humanos (n=1 de Tangará da Serra/MT e n=1 de Novo Progresso/PA). As análises das sequências completas demonstraram a presença de ORFs para uma possível proteína NSs, já descrita para outros hantavírus. As análises filogenéticas entre as sequências obtidas neste estudo e de outros hantavírus disponíveis no GenBank sugerem que, o vírus Castelo dos Sonhos é o responsável pelos casos de SPH em municípios da área de influência da BR-163, obtendo-se, pela primeira vez, a sequência completa desse vírus em roedor Oligoryzomys utiaritensis, capturado no Mato Grosso; confirmou-se a circulação contínua do vírus Laguna Negra-like, associado aos casos de SPH no estado do Mato Grosso; o vírus Mamoré-like foi detectado pela primeira vez em roedores O.microtis, nos estado do Amazonas e Rondônia, porém não associado a casos humanos; o vírus Anajatuba foi o responsável por um caso de óbito proveniente do Maranhão. Esse trabalho servirá como suporte para estudos moleculares e epidemiológicos futuros, pois, fornece dados inéditos acerca da transmissão das hantaviroses na Amazônia brasileira.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NADCA Election in Progress Berryman Institute Announces 1999 Awards New Probe Editor to be Appointed: Larry Sullivan Ken Garner Retires Book Review: "Master Land Snaring: Canine and Coon Techniques, Effective in All Terrains." by Newt Sterling as told to Bob Noonan. 1999. 58 pages, illustrated. NPCA Gets New Name Lobster Plates: PETA (People for the Ethical Treatment of Animals) is fighting to prevent the return of the lobster to Maine's automobile license plates. Active Antis in the Northwest Animal Rights Violence on Increase Abstracts from the 6th Annual Conference of The Wildlife Society: Monitoring of Sin Nombre Hantavirus in deer mice of the Southwest, USA -- Robinson, Rhonda /., Kathryn D. Bennett, James R. Biggs, Timothy K. Haarmann, David C. Keller, and Mary E. Salisbury Predators in the classroom: A prickly paradigm for educators -- Rollins, Dale Trends in bat rabies in the U.S.: Shaping public health policy -- Rupprecht, Charles E., Sharon B. Messenger, and Jean S. Smith

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dr. Richard J. Douglass has been conducting small mammal field studies since 1968. For the past 19 years he has been conducting field studies on the ecology of deer mice and hantavirus in Montana, Panama, and Argentina. He has published papers on mammals from rodents to large ungulates. He has been conducting student field trips at Montana Tech since 1983.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sin Nombre virus is a strain of Hantavirus that causes the sometimes fatal human illness Hantavirus Pulmonary Syndrome. The reservoir host of SNV is the deer mouse. Deer mice are found in a wide variety of habitats including peridomestic (in and around buildings) settings. Amy provides an overview of hantaviruses and discusses the research she has been conducting on the SNV/deer mice system since 1995 (in Arizona) and 1999 (in Montana).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rodents are important reservoirs for a large number of zoonotic pathogens. We examined the occurrence of 11 viral, bacterial, and parasitic agents in rodent populations in Austria, including three different hantaviruses, lymphocytic choriomeningitis virus, orthopox virus, Leptospira spp., Borrelia spp., Rickettsia spp., Bartonella spp., Coxiella burnetii, and Toxoplasma gondii. In 2008, 110 rodents of four species (40 Clethrionomys glareolus, 29 Apodemus flavicollis, 26 Apodemus sylvaticus, and 15 Microtus arvalis) were trapped at two rural sites in Lower Austria. Chest cavity fluid and samples of lung, spleen, kidney, liver, brain, and ear pinna skin were collected. We screened selected tissue samples for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, Leptospira, Borrelia, Rickettsia, Bartonella spp., C. burnetii, and T. gondii by RT-PCR/PCR and detected nucleic acids of Tula hantavirus, Leptospira spp., Borrelia afzelii, Rickettsia spp., and different Bartonella species. Serological investigations were performed for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, and Rickettsia spp. Here, Dobrava-Belgrade hantavirus-, Tula hantavirus-, lymphocytic choriomeningitis virus-, orthopox virus-, and rickettsia-specific antibodies were demonstrated. Puumala hantavirus, C. burnetii, and T. gondii were neither detected by RT-PCR/PCR nor by serological methods. In addition, multiple infections with up to three pathogens were shown in nine animals of three rodent species from different trapping sites. In conclusion, these results show that rodents in Austria may host multiple zoonotic pathogens. Our observation raises important questions regarding the interactions of different pathogens in the host, the countermeasures of the host's immune system, the impact of the host–pathogen interaction on the fitness of the host, and the spread of infectious agents among wild rodents and from those to other animals or humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Puumala virus (PUUV) is one of the predominant hantavirus species in Europe causing mild to moderate cases of haemorrhagic fever with renal syndrome. Parts of Lower Saxony in north-western Germany are endemic for PUUV infections. In this study, the complete PUUV genome sequence of a bank vole-derived tissue sample from the 2007 outbreak was determined by a combined primer-walking and RNA ligation strategy. The S, M and L genome segments were 1,828, 3,680 and 6,550 nucleotides in length, respectively. Sliding-window analyses of the nucleotide sequences of all available complete PUUV genomes indicated a non-homogenous distribution of variability with hypervariable regions located at the 3′-ends of the S and M segments. The overall similarity of the coding genome regions to the other PUUV strains ranged between 80.1 and 84.7 % at the level of the nucleotide sequence and between 89.5 and 98.1 % for the deduced amino acid sequences. In comparison to the phylogenetic trees of the complete coding sequences, trees based on partial segments revealed a general drop in phylogenetic support and a lower resolution. The Astrup strain S and M segment sequences showed the highest similarity to sequences of strains from geographically close sites in the Osnabrück Hills region. In conclusion, a primer-walking-mediated strategy resulted in the determination of the first complete nucleotide sequence of a PUUV strain from Central Europe. Different levels of variability along the genome provide the opportunity to choose regions for analyses according to the particular research question, e.g., large-scale phylogenetics or within-host evolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Newly emerged hantaviruses replicate primarily in the pulmonary endothelium, cause acute platelet loss, and result in hantavirus pulmonary syndrome (HPS). We now report that specific integrins expressed on platelets and endothelial cells permit the cellular entry of HPS-associated hantaviruses. Infection with HPS-associated hantaviruses, NY-1 and Sin Nombre virus (SNV), is inhibited by antibodies to β3 integrins and by the β3-integrin ligand, vitronectin. In contrast, infection with the nonpathogenic (no associated human disease) Prospect Hill virus was inhibited by fibronectin and β1-specific antibodies but not by β3-specific antibodies or vitronectin. Transfection with recombinant αIIbβ3 or αvβ3 integrins rendered cells permissive to NY-1 and SNV but not Prospect Hill virus infection, indicating that αIIbβ3 and αvβ3 integrins mediate the entry of NY-1 and SNV hantaviruses. Furthermore, entry is divalent cation independent, not blocked by arginine-glycine-aspartic acid peptides and still mediated by, ligand-binding defective, αIIbβ3-integrin mutants. Hence, NY-1 and SNV entry is independent of β3 integrin binding to physiologic ligands. These findings implicate integrins as cellular receptors for hantaviruses and indicate that hantavirus pathogenicity correlates with integrin usage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To investigate the activity and mechanism of action of arbidol against Hantaan virus (HTNV) activity by modulating inflammation via TLR-4 pathway. Methods: HUVEC cells infected with HTNV 76-118 were treated with serially diluted arbidol solutions at -2h (2 h before viral infection, pre-treatment mode), 0 h (at the same time as viral infection, simultaneous treatment mode) or 2 h (2 h after viral infection, post-treatment mode). The transcript levels of TLR4 were detected by semi-quantitative reverse transcription-PCR (RT-PCR) at 6, 12, 18, and 24 h later. The levels of iNOS and TNF-α were examined using enzyme-linked immunosorbent assay (ELISA). Results: Pre-treatment with arbidol, rather than simultaneous treatment or post-treatment, effectively inhibited up-regulation of cellular TLR4 expression (up to 40 ± 6.1 % inhibition) and activity of supernatant iNOS induced by HTNV infection(up to 44.1 ± 9.4 % inhibition), as well as in a LPSstimulated inflammatory endothelial cell. Arbidol decreased the elevated TNF-α levels induced by LPS stimulation. Conclusion: These results are the first evidence that arbidol modulates viral PRRs signaling and its consequential inflammatory cytokine/chemokine response during hantavirus infection.