21 resultados para Carnitine

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A key regulatory point in the control of fatty acid (FA) oxidation is thought to be transport of FAs across the mitochondrial membrane by carnitine palmitoyltransferase I (CPT I). To investigate the role of CPT I in FA metabolism, we used in vivo electrotransfer (IVE) to locally overexpress CPT I in muscle of rodents. A vector expressing the human muscle isoform of CPT I was electrotransferred into the right lateral muscles of the distal hindlimb [tibialis cranialis (TC) and extensor digitorum longus (EDL)] of rats, and a control vector expressing GFP was electrotransferred into the left muscles. Initial studies showed that CPT I protein expression peaked 7 days after IVE (+104%, P < 0.01). This was associated with an increase in maximal CPT I activity (+30%, P < 0.001) and a similar increase in palmitoyl-CoA oxidation (+24%; P < 0.001) in isolated mitochondria from the TC. Importantly, oxidation of the medium-chain FA octanoyl-CoA and CPT I sensitivity to inhibition by malonyl-CoA were not altered by CPT I overexpression. FA oxidation in isolated EDL muscle strips was increased with CPT I overexpression (+28%, P < 0.01), whereas FA incorporation into the muscle triacylglycerol (TAG) pool was reduced (−17%, P < 0.01). As a result, intramyocellular TAG content was decreased with CPT I overexpression in both the TC (−25%, P < 0.05) and the EDL (−45%, P < 0.05). These studies demonstrate that acute overexpression of CPT I in muscle leads to a repartitioning of FAs away from esterification and toward oxidation and highlight the importance of CPT I in regulating muscle FA metabolism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To determine the effect of a high-fat diet on the expression of genes important for fat oxidation, the protein abundance of the transcription factors peroxisome proliferator-activated receptor (PPAR) isoforms α and γ, and selected enzyme activities in type I and II skeletal muscle. Research Methods and Procedures: Sprague-Dawley rats consumed either a high-fat (HF: 78% energy, n = 8) or high-carbohydrate (64% energy, n = 8) diet for 8 weeks while remaining sedentary. Results: The expression of genes important for fat oxidation tended to increase in both type I (soleus) and type II (extensor digitorum longus) fiber types after an HF dietary intervention. However, the expression of muscle type carnitine palmitoyltransferase I was not increased in extensor digitorum longus. Analysis of the gene expression of both peroxisome proliferator-activated receptor-γ coactivator and forkhead transcription factor O1 demonstrated no alteration in response to the HF diet. Similarly, PPARα and PPARγ protein levels were also not altered by the HF diet. Discussion: An HF diet increased the expression of an array of genes involved in lipid metabolism, with only subtle differences evident in the response within differing skeletal muscle fiber types. Despite changes in gene expression, there were no effects of diet on peroxisome proliferator-activated receptor-gamma coactivator and forkhead transcription factor O1 mRNA and the protein abundance of PPARα and PPARγ.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Dietary fatty acids may be important in regulating gene expression. However, little is known about the effect of changes in dietary fatty acids on gene regulation in human skeletal muscle.
Objective: The objective was to determine the effect of altered dietary fat intake on the expression of genes encoding proteins necessary for fatty acid transport and &szlig;-oxidation in skeletal muscle.
Design: Fourteen well-trained male cyclists and triathletes with a mean (&plusmn; SE) age of 26.9 &plusmn; 1.7 y, weight of 73.7 &plusmn; 1.7 kg, and peak oxygen uptake of 67.0 &plusmn; 1.3 mL &dot; kg-1 &dot; min-1 consumed either a high-fat diet (HFat: > 65% of energy as lipids) or an isoenergetic high-carbohydrate diet (HCho: 70–75% of energy as carbohydrate) for 5 d in a crossover design. On day 1 (baseline) and again after 5 d of dietary intervention, resting muscle and blood samples were taken. Muscle samples were analyzed for gene expression [fatty acid translocase (FAT/CD36), plasma membrane fatty acid binding protein (FABPpm), carnitine palmitoyltransferase I (CPT I), &szlig;-hydroxyacyl-CoA dehydrogenase (&szlig;-HAD), and uncoupling protein 3 (UCP3)] and concentrations of the proteins FAT/CD36 and FABPpm.
Results: The gene expression of FAT/CD36 and &szlig; -HAD and the gene abundance of FAT/CD36 were greater after the HFat than after the HCho diet (P < 0.05). Messenger RNA expression of FABPpm, CPT I, and UCP-3 did not change significantly with either diet.
Conclusions
: A rapid and marked capacity for changes in dietary fatty acid availability to modulate the expression of mRNA-encoding proteins is necessary for fatty acid transport and oxidative metabolism. This finding is evidence of nutrient-gene interactions in human skeletal muscle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dietary fatty acids regulate the abundance and activity of various proteins involved in the regulation of fat oxidation by functioning as regulators of gene transcription. To determine whether the transcription of key lipid metabolic proteins necessary for fat metabolism within human skeletal muscle are regulated by acute elevations in circulating free fatty acid (FFA) concentrations, 7 healthy men underwent 3 randomized resting infusions of Intralipid (20%) with heparin sodium, saline and heparin sodium, or saline only for 5 hours. These infusions significantly elevated plasma FFA concentrations by 15-fold (to 1.67 ± 0.13 mmol/L) in the Intralipid infusion trial, with modest elevations observed in the saline and heparin sodium and saline alone infusion groups (0.67 ± 0.09 and 0.49 ± 0.087 mmol/L, P < .01 both vs Intralipid infusion). Analysis of messenger RNA (mRNA) concentration demonstrated that pyruvate dehydrogenase kinase isoform 4 (PDK4) mRNA, a key negative regulator of glucose oxidation, was increased in all trials with a 24-fold response after Intralipid infusion, 15-fold after saline and heparin infusion, and 9-fold after saline alone. The PDK4 increases were not significantly different between the 3 trials. The mRNA concentration of the major uncoupling protein within skeletal muscle, uncoupling protein 3, was not elevated in parallel to the increased plasma FFA as similar (not, vert, similar2-fold) increases were evident in all trials. Additional genes involved in lipid transport (fatty acid translocase/CD36), oxidation (carnitine palmitoyltransferase I), and metabolism (1-acylglycerol-3-phosphate O-acyltransferase 1, hormone-sensitive lipase, and peroxisomal proliferator-activated receptor-γ coactivator-1α) were not altered by increased circulating FFA concentrations. The present data demonstrate that of the genes analyzed that encode proteins that are key regulators of lipid homeostasis within skeletal muscle, only the PDK4 gene is uniquely sensitive to increasing FFA concentrations after increased plasma FFA achieved by intravenous lipid infusion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ingestion of carbohydrate during exercise may blunt the stimulation of fat oxidative pathways by raising plasma insulin and glucose concentrations and lowering plasma free fatty acid (FFA) levels, thereby causing a marked shift in substrate oxidation. We investigated the effects of a single 2-h bout of moderate-intensity exercise on the expression of key genes involved in fat and carbohydrate metabolism with or without glucose ingestion in seven healthy untrained men (22.7 ± 0.6 yr; body mass index: 23.8 ± 1.0 kg/m2; maximal O2 consumption: 3.85 ± 0.21 l/min). Plasma FFA concentration increased during exercise (P < 0.01) in the fasted state but remained unchanged after glucose ingestion, whereas fat oxidation (indirect calorimetry) was higher in the fasted state vs. glucose feeding (P < 0.05). Except for a significant decrease in the expression of pyruvate dehydrogenase kinase-4 (P < 0.05), glucose ingestion during exercise produced minimal effects on the expression of genes involved in carbohydrate utilization. However, glucose ingestion resulted in a decrease in the expression of genes involved in fatty acid transport and oxidation (CD36, carnitine palmitoyltransferase-1, uncoupling protein 3, and 5'-AMP-activated protein kinase-α2; P < 0.05). In conclusion, glucose ingestion during exercise decreases the expression of genes involved in lipid metabolism rather than increasing genes involved in carbohydrate metabolism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The efficiency of five dietary lipid sources (fish oil as control—C; canola oil—CO; poultry fat—PF; pork lard—PL; and oleine oil—OO) were evaluated in juvenile brown trout (58.4±0.7 g) in an experiment conducted over 70 days at 14.6±0.4 °C. The best growth was observed in fish fed the C diet whereas the PL diet fed fish had the best feed utilization. Significant differences in carcass and muscle proximate composition, but not in liver, were noted among fish fed the different dietary treatments. The fatty acid composition of muscle largely reflected that of the diets, while total cholesterol was not affected. The atherogenicity and the thrombogenicity qualities of the trout flesh were modified by the lipid sources. Sensory analysis did not show any significant differences among the cooked fillets with respect to dietary treatments, while in uncooked products, some significant differences were observed. The carnitine palmitoyltransferase I and II (CPT-I and CPT-II) activities of liver and white muscle were assayed for a better understanding of the potential β-oxidation capability of the different dietary lipid sources. The hepatic, but not white muscle CPT-I and CPT-II activities were affected by dietary treatments. This study showed that alternative lipid sources could be used effectively for oil coating extruded diets for brown trout.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims/hypothesis We investigated whether skeletal muscle peroxisome proliferator-activated receptor gamma coactivator-1 (PGC1A; also known as PPARGC1A) and its target mitofusin-2 (MFN2), as well as carnitine palmitoyltransferase-1 (CPT1; also known as carnitine palmitoyltransferase 1A [liver] [CPT1A]) and uncoupling protein (UCP)3, are involved in the improvement of insulin resistance and/or in the modification of energy expenditure during surgically induced massive weight loss.
Materials and methods Seventeen morbidly obese women (mean BMI: 45.9 ± 4 kg/m2) were investigated before, and 3 and 12 months after, Roux-en-Y gastric bypass (RYGB). We evaluated insulin sensitivity by the euglycaemic–hyperinsulinaemic clamp, energy expenditure and substrate oxidation by indirect calorimetry, and muscle mRNA expression by PCR.
Results Post-operatively, PGC1A was enhanced at 3 (p = 0.02) and 12 months (p = 0.03) as was MFN2 (p = 0.008 and p = 0.03 at 3 and 12 months respectively), whereas UCP3 was reduced (p = 0.03) at 12 months. CPT1 did not change. The expression of PGC1A and MFN2 were strongly (p < 0.0001) related. Insulin sensitivity, which increased after surgery (p = 0.002 at 3, p = 0.003 at 12 months), was significantly related to PGC1A and MFN2, but only MFN2 showed an independent influence in a multiple regression analysis. Energy expenditure was reduced at 3 months post-operatively (p = 0.001 vs before RYGB), remaining unchanged thereafter until 12 months. CPT1 and UCP3 were not significantly related to the modifications of energy expenditure or of lipid oxidation rate.
Conclusions/interpretation Weight loss upregulates PGC1A, which in turn stimulates MFN2 expression. MFN2 expression significantly and independently contributes to the improvement of insulin sensitivity. UCP3 and CPT1 do not seem to influence energy expenditure after RYGB.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examined the actions of 17β-estradiol (E2) and progesterone on the regulation of the peroxisome proliferator-activated receptors (PPARα and PPARγ) family of nuclear transcription factors and the mRNA abundance of key enzymes involved in fat oxidation, in skeletal muscle. Specifically,
carnitine palmitoyltransferase I (CPT I), β-3-hydroxyacyl CoA dehydrogenase (β-HAD), and pyruvate dehydrogenase kinase 4 (PDK4) were examined. Sprague–Dawley rats were ovariectomized and treated with placebo (Ovx), E2, progesterone, or both hormones in combination (E+P). Additionally,
sham-operated rats were treated with placebo (Sham) to serve as controls. Hormone (or vehicle only) delivery was via time release pellets inserted at the time of surgery, 15 days prior to analysis. E2 treatment increased PPARα mRNA expression and protein content (P<0·05), compared with Ovx treatment. E2 also resulted in upregulated mRNA of CPT I and PDK4 (P<0·05). PPARγ mRNA expression was also increased (P<0·05) by E2 treatment, although protein content remained unaltered. These data
demonstrate the novel regulation of E2 on PPARα and genes encoding key proteins that are pivotal in regulating skeletal muscle lipid oxidative flux.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Changes in dietary macronutrient intake alter muscle and blood substrate availability and are important for regulating gene expression. However, few studies have examined the effects of diet manipulation on gene expression in human skeletal muscle. The aim of this study was to quantify the extent to which altering substrate availability impacts on subsequent mRNA abundance of a subset of carbohydrate (CHO)- and fat-related genes. Seven subjects consumed either a low- (LOW; 0.7 g/kg body mass CHO) or high- (HIGH; 10 g/kg body mass CHO) CHO diet for 48 h after performing an exhaustive exercise bout to deplete muscle glycogen stores. After intervention, resting muscle and blood samples were taken. Muscle was analyzed for the gene abundances of GLUT4, glycogenin, pyruvate dehydrogenase kinase-4 (PDK-4), fatty acid translocase (FAT/CD36), carnitine palmitoyltransferase I (CPT I), hormone-sensitive lipase (HSL), β-hydroxyacyl-CoA dehydrogenase (΄β-HAD), and uncoupling binding protein-3 (UCP3), and blood samples for glucose, insulin, and free fatty acid (FFA) concentrations. Glycogen-depleting exercise and HIGH-CHO resulted in a 300% increase in muscle glycogen content (P < 0.001) relative to the LOW-CHO condition. FFA concentrations were twofold higher after LOW- vs. HIGH-CHO (P < 0.05). The exercise-diet manipulation exerted a significant effect on transcription of all carbohydrate-related genes, with an increase in GLUT4 and glycogenin mRNA abundance and a reduction in PDK-4 transcription after HIGH-CHO (all P < 0.05). FAT/CD36 (P < 0.05) and UCP3 (P < 0.01) gene transcriptions were increased following LOW-CHO. We conclude that 1) there was a rapid capacity for a short-term exercise and diet intervention to exert coordinated changes in the mRNA transcription of metabolic related genes, and 2) genes involved in glucose regulation are increased following a high-carbohydrate diet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The uncoupling protein homologs UCP2 and UCP3 have been proposed as candidate genes for the regulation of lipid metabolism. Within the context of this hypothesis, we have compared, from fed and fasted rats, changes in gene expression of skeletal muscle UCP2 and UCP3 with those of carnitine palmitoyltransferase I and medium-chain acyl-CoA dehydrogenase, two key enzymes regulating lipid flux across the mitochondrial #-oxidation pathway. In addition, changes in gene expression of peroxisome proliferator-activated receptor gamma, a nuclear transcription factor implicated in lipid metabolism, were also investigated. The results indicate that in response to fasting, the mRNA levels of UCP2, UCP3, carnitine palmitoyltransferase I and medium-chain acyl-CoA dehydrogenase are markedly increased, by three- to sevenfold, in the gastrocnemius and tibialis anterior (fast-twitch muscles, predominantly glycolytic or oxidative-glycolytic), but only mildly increased, by less than twofold, in the soleus (slow-twitch muscle, predominantly oxidative). Furthermore, such muscle-type dependency in fasting-induced transcriptional changes in UCP2, UCP3, carnitine palmitoyltransferase and medium-chain acyl-CoA dehydrogenase persists when the increase in circulating levels of free fatty acids during fasting is abolished by the anti-lipolytic agent nicotinic acid - with blunted responses only in the slow-twitch muscle contrasting with unabated increases in fast-twitch muscles. Independently of muscle type, however, the mRNA levels of peroxisome proliferator-activated receptor gamma are not altered during fasting. Taken together, these studies indicate a close association between fasting-induced changes in UCP2 and UCP3 gene expression with those of key regulators of lipid oxidation, and are hence consistent with the hypothesis that these UCP homologs may be involved in the regulation of lipid metabolism. Furthermore, they suggest that in response to fasting, neither the surge of free fatty acids in the circulation nor induction of the peroxisome proliferator-activated receptor gamma gene may be required for the marked upregulation of genes encoding the UCP homologs and key enzymes regulating lipid oxidation in fast-twitch muscles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In addition to its role in the storage of fat, adipose tissue acts as an endocrine organ, and it contains a functional renin-angiotensin system (RAS). Angiotensin-converting enzyme (ACE) plays a key role in the RAS by converting angiotensin I to the bioactive peptide angiotensin II (Ang II). In the present study, the effect of targeting the RAS in body energy homeostasis and glucose tolerance was determined in homozygous mice in which the gene for ACE had been deleted (ACE-/-) and compared with wild-type littermates. Compared with wild-type littermates, ACE-/- mice had lower body weight and a lower proportion of body fat, especially in the abdomen. ACE-/- mice had greater fed-state total energy expenditure (TEE) and resting energy expenditure (REE) than wild-type littermates. There were pronounced increases in gene expression of enzymes related to lipolysis and fatty acid oxidation (lipoprotein lipase, carnitine palmitoyl transferase, long-chain acetyl CoA dehydrogenase) in the liver of ACE-/- mice and also lower plasma leptin. In contrast, no differences were detected in daily food intake, activity, fed-state plasma lipids, or proportion of fat excrete in fecal matter. In conclusion, the reduction in ACE activity is associated with a decreased accumulation of body fat, especially in abdominal fat depots. The decreased body fat in ACE-/- mice is independent of food intake and appears to be due to a high energy expenditure related to increased metabolism of fatty acids in the liver, with the additional effect of increased glucose tolerance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective:
Nutrition during critical periods in early life may increase the subsequent risk of obesity, hypertension and metabolic diseases in adulthood. Few studies have focused on the long-term consequences of poor nutrition during the suckling period on the susceptibility to developing obesity when exposed to a palatable cafeteria-style high-fat diet (CD) after weaning.

Design:
This study examined the impact of early undernutrition, followed by CD exposure, on blood pressure, hormones and genes important for insulin sensitivity and metabolism and skeletal muscle mRNA expression of adiponectin receptor 1 (AdipoR1), carnitine palmitoyl-transferase I (CPT-1), cytochrome c oxidase 4 (COX4) and peroxisome proliferator-activated receptor alpha (PPARalpha). Following normal gestation, Sprague–Dawley rat litters were adjusted to 18 (undernourished) or 12 (control) pups. Rats were weaned (day 21) onto either palatable CD or standard chow.

Results:
Early undernourished rats were significantly lighter than control by 17 days, persisting into adulthood only when animals were fed chow after weaning. Regardless of litter size, rats fed CD had doubled fat mass at 15 weeks of age, and significant elevations in plasma leptin, insulin and adiponectin. Importantly, undernutrition confined to the suckling period, elevated circulating adiponectin regardless of post-weaning diet. Blood pressure was reduced in early undernourished rats fed chow, and increased by CD. Early undernutrition was associated with long-term elevations in the expression of AdipoR1, CPT-1, COX4 and PPARalpha in skeletal muscle.

Conclusion:
This study demonstrates the important role of early nutrition on body weight and metabolism, suggesting early undernourishment enhances insulin sensitivity and fatty-acid oxidation. The long-term potential benefit of limiting nutrition in the early postnatal period warrants further investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective:
Palatable food disrupts normal appetite regulation, which may contribute to the etiology of obesity. Neuropeptide Y (NPY) and cholecystokinin play critical roles in the regulation of food intake and energy homeostasis, while adiponectin and carnitine palmitoyltransferase (CPT) are important for insulin sensitivity and fatty acid oxidation. This study examined the impact of short- and long-term consumption of palatable high-fat diet (HFD) on these critical metabolic regulators.

Methods:
Male C57BL/6 mice were exposed to laboratory chow (12% fat), or cafeteria-style palatable HFD (32% fat) for 2 or 10 weeks. Body weight and food intake were monitored throughout. Plasma leptin, hypothalamic NPY and cholecystokinin, and mRNA expression of leptin, adiponectin, their receptors and CPT-1, in fat and muscles were measured.

Results:
Caloric intake of the palatable HFD group was 2–3 times greater than control, resulting in a 37% higher body weight. Fat mass was already increased at 2 weeks; plasma leptin concentrations were 2.4 and 9 times higher than control at 2 and 10 weeks, respectively. Plasma adiponectin was increased at 10 weeks. Muscle adiponectin receptor 1 was increased at 2 weeks, while CPT-1 mRNA was markedly upregulated by HFD at both time points. Hypothalamic NPY and cholecystokinin content were significantly decreased at 10 weeks.

Conclusion:
Palatable HFD induced hyperphagia, fat accumulation, increased adiponectin, leptin and muscle fatty acid oxidation, and reduced hypothalamic NPY and cholecystokinin. Our data suggest that the adaptive changes in hypothalamic NPY and muscle fatty acid oxidation are insufficient to reverse the progress of obesity and metabolic consequences induced by a palatable HFD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exercise improves the ability of skeletal muscle to metabolise fats and sugars. For these improvements to occur the muscle detects a signal caused by exercise, resulting in changes in genes and proteins that control metabolism. We show that endurance exercise increases the amount of a protein called striated muscle activator of Rho signalling (STARS) as well as several other proteins influenced by STARS.We also show that the amount of STARS can be increased by signals directed from proteins called peroxisome proliferator-activated receptor gamma co-activator 1-α (PGC-1α) and oestrogen-related receptor-α (ERRα). We also observed that when we reduce the amount of STARS in muscle cells, we block the ability of PGC-1α/ERRα to increase a gene called carnitine palmitoyltransferase-1β (CPT-1β), which is important for fat metabolism. Our study has shown that the STARS pathway is regulated by endurance exercise. STARS may also play a role in fat metabolism in muscle.