Regulation of metabolic genes in human skeletal muscle by short-term exercise and diet manipulation


Autoria(s): Arkinstall, Melissa J.; Tunstall, Rebecca J.; Cameron-Smith, David; Hawley, John A.
Data(s)

03/02/2004

Resumo

Changes in dietary macronutrient intake alter muscle and blood substrate availability and are important for regulating gene expression. However, few studies have examined the effects of diet manipulation on gene expression in human skeletal muscle. The aim of this study was to quantify the extent to which altering substrate availability impacts on subsequent mRNA abundance of a subset of carbohydrate (CHO)- and fat-related genes. Seven subjects consumed either a low- (LOW; 0.7 g/kg body mass CHO) or high- (HIGH; 10 g/kg body mass CHO) CHO diet for 48 h after performing an exhaustive exercise bout to deplete muscle glycogen stores. After intervention, resting muscle and blood samples were taken. Muscle was analyzed for the gene abundances of GLUT4, glycogenin, pyruvate dehydrogenase kinase-4 (PDK-4), fatty acid translocase (FAT/CD36), carnitine palmitoyltransferase I (CPT I), hormone-sensitive lipase (HSL), β-hydroxyacyl-CoA dehydrogenase (΄β-HAD), and uncoupling binding protein-3 (UCP3), and blood samples for glucose, insulin, and free fatty acid (FFA) concentrations. Glycogen-depleting exercise and HIGH-CHO resulted in a 300% increase in muscle glycogen content<i> </i>(<i>P </i>< 0.001) relative to the LOW-CHO condition. FFA concentrations were twofold higher after LOW- vs. HIGH-CHO (<i>P</i> < 0.05). The exercise-diet manipulation exerted a significant effect on transcription of all carbohydrate-related genes, with an increase in GLUT4 and glycogenin mRNA abundance and a reduction in PDK-4 transcription after HIGH-CHO (all <i>P</i> < 0.05). FAT/CD36 (<i>P</i> < 0.05) and UCP3 (<i>P</i> < 0.01) gene transcriptions were increased following LOW-CHO. We conclude that 1) there was a rapid capacity for a short-term exercise and diet intervention to exert coordinated changes in the mRNA transcription of metabolic related genes, and 2) genes involved in glucose regulation are increased following a high-carbohydrate diet.<br />

Identificador

http://hdl.handle.net/10536/DRO/DU:30008697

Idioma(s)

eng

Publicador

American Physiological Society

Relação

http://dro.deakin.edu.au/eserv/DU:30008697/n20040381.pdf

http://dx.doi.org/10.1152/ajpendo.00557.2003

Direitos

2004, American Physiological Society

Palavras-Chave #messenger ribonucleic acid #exercise-diet gene interaction
Tipo

Journal Article