8 resultados para COMPUTAÇÃO EVOLUTIVA
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Este trabalho propõe uma abordagem computacional evolutiva para a resolução do problema de alocação de dispositivos indicadores de faltas (IFs) em alimentadores primários de distribuição de energia elétrica. De forma mais específica, o problema de se obter o melhor local de instalação é solucionado por meio da técnica de Algoritmos Genéticos (AGs) que busca obter uma configuração eficiente de instalação de IFs no tronco principal de um alimentador de distribuição. Assim, faz-se a modelagem do mesmo na forma de um problema de otimização orientado à melhoria dos indicadores de qualidade do serviço e ao encontro de uma solução economicamente atraente. Os resultados com dados reais comprovam a eficiência da metodologia proposta.
Resumo:
The design of a network is a solution to several engineering and science problems. Several network design problems are known to be NP-hard, and population-based metaheuristics like evolutionary algorithms (EAs) have been largely investigated for such problems. Such optimization methods simultaneously generate a large number of potential solutions to investigate the search space in breadth and, consequently, to avoid local optima. Obtaining a potential solution usually involves the construction and maintenance of several spanning trees, or more generally, spanning forests. To efficiently explore the search space, special data structures have been developed to provide operations that manipulate a set of spanning trees (population). For a tree with n nodes, the most efficient data structures available in the literature require time O(n) to generate a new spanning tree that modifies an existing one and to store the new solution. We propose a new data structure, called node-depth-degree representation (NDDR), and we demonstrate that using this encoding, generating a new spanning forest requires average time O(root n). Experiments with an EA based on NDDR applied to large-scale instances of the degree-constrained minimum spanning tree problem have shown that the implementation adds small constants and lower order terms to the theoretical bound.
Resumo:
Recently, researches have shown that the performance of metaheuristics can be affected by population initialization. Opposition-based Differential Evolution (ODE), Quasi-Oppositional Differential Evolution (QODE), and Uniform-Quasi-Opposition Differential Evolution (UQODE) are three state-of-the-art methods that improve the performance of the Differential Evolution algorithm based on population initialization and different search strategies. In a different approach to achieve similar results, this paper presents a technique to discover promising regions in a continuous search-space of an optimization problem. Using machine-learning techniques, the algorithm named Smart Sampling (SS) finds regions with high possibility of containing a global optimum. Next, a metaheuristic can be initialized inside each region to find that optimum. SS and DE were combined (originating the SSDE algorithm) to evaluate our approach, and experiments were conducted in the same set of benchmark functions used by ODE, QODE and UQODE authors. Results have shown that the total number of function evaluations required by DE to reach the global optimum can be significantly reduced and that the success rate improves if SS is employed first. Such results are also in consonance with results from the literature, stating the importance of an adequate starting population. Moreover, SS presents better efficacy to find initial populations of superior quality when compared to the other three algorithms that employ oppositional learning. Finally and most important, the SS performance in finding promising regions is independent of the employed metaheuristic with which SS is combined, making SS suitable to improve the performance of a large variety of optimization techniques. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
We propose simple heuristics for the assembly line worker assignment and balancing problem. This problem typically occurs in assembly lines in sheltered work centers for the disabled. Different from the well-known simple assembly line balancing problem, the task execution times vary according to the assigned worker. We develop a constructive heuristic framework based on task and worker priority rules defining the order in which the tasks and workers should be assigned to the workstations. We present a number of such rules and compare their performance across three possible uses: as a stand-alone method, as an initial solution generator for meta-heuristics, and as a decoder for a hybrid genetic algorithm. Our results show that the heuristics are fast, they obtain good results as a stand-alone method and are efficient when used as a initial solution generator or as a solution decoder within more elaborate approaches.
Resumo:
Field-Programmable Gate Arrays (FPGAs) are becoming increasingly important in embedded and high-performance computing systems. They allow performance levels close to the ones obtained with Application-Specific Integrated Circuits, while still keeping design and implementation flexibility. However, to efficiently program FPGAs, one needs the expertise of hardware developers in order to master hardware description languages (HDLs) such as VHDL or Verilog. Attempts to furnish a high-level compilation flow (e.g., from C programs) still have to address open issues before broader efficient results can be obtained. Bearing in mind an FPGA available resources, it has been developed LALP (Language for Aggressive Loop Pipelining), a novel language to program FPGA-based accelerators, and its compilation framework, including mapping capabilities. The main ideas behind LALP are to provide a higher abstraction level than HDLs, to exploit the intrinsic parallelism of hardware resources, and to allow the programmer to control execution stages whenever the compiler techniques are unable to generate efficient implementations. Those features are particularly useful to implement loop pipelining, a well regarded technique used to accelerate computations in several application domains. This paper describes LALP, and shows how it can be used to achieve high-performance computing solutions.
Resumo:
Predição de estruturas de proteínas (PSP) é um problema computacionalmente complexo. Modelos simplificados da molécula proteica (como o Modelo HP) e o uso de Algoritmos Evolutivos (AEs) estão entre as principais técnicas investigadas para PSP. Entretanto, a avaliação de uma estrutura representada pelo Modelo HP considera apenas o número de contatos hidrofóbicos, não possibilitando distinguir entre estruturas com o mesmo número de contatos hidrofóbicos. Neste trabalho, é apresentada uma nova formulação multiobjetivo para PSP em Modelo HP. Duas métricas são avaliadas: o número de contatos hidrofóbicos e a distância entre os aminoácidos hidrofóbicos, as quais são tratados pelo AE Multiobjetivo em Tabelas (AEMT). O algoritmo mostrou-se rápido e robusto.
Resumo:
The main objective of this work is to present an efficient method for phasor estimation based on a compact Genetic Algorithm (cGA) implemented in Field Programmable Gate Array (FPGA). To validate the proposed method, an Electrical Power System (EPS) simulated by the Alternative Transients Program (ATP) provides data to be used by the cGA. This data is as close as possible to the actual data provided by the EPS. Real life situations such as islanding, sudden load increase and permanent faults were considered. The implementation aims to take advantage of the inherent parallelism in Genetic Algorithms in a compact and optimized way, making them an attractive option for practical applications in real-time estimations concerning Phasor Measurement Units (PMUs).
Resumo:
Neste artigo propomos uma adaptação de um algoritmo baseado na evolução biológica para a obtenção do controle ótimo do problema do custo médio a longo prazo para sistemas lineares com saltos markovianos. Não há na literatura um método que forneça, comprovadamente, o controle ótimo do problema, nem estudos comparativos de diferentes métodos. O algoritmo empregado diferencia-se dos algoritmos genéticos básicos por substituir os operadores evolutivos por um sorteio de acordo com uma distribuição probabilística. Comparamos o algoritmo proposto com um método bastante utilizado para esta classe de problema, levando em consideração a relação entre os custos obtidos, o tempo de CPU e a quantidade de problemas em que o critério de parada estabelecido foi atingido.