51 resultados para Sequencing


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human pancreatic juice contains two major trypsinogen isoenzymes called trypsinogen-1 and -2, or cationic and anionic trypsinogen, respectively. Trypsinogen isoenzymes are also expressed in various normal and malignant tissues. We aimed at developing monoclonal antibodies (MAbs) and time-resolved immunofluorometric methods recognizing human trypsinogen-1 and -2, respectively. Using these MAbs and methods we purified, characterized and quantitated trypsinogen isoenzymes in serum samples, ovarian cyst fluids and conditioned cell culture media. In sera from healthy subjects and patients with extrapancreatic disease the concentration of trypsinogen-1 is higher than that of trypsinogen-2. However, in acute pancreatitis we found that the concentration of serum trypsinogen-2 is 50-fold higher than in controls, whereas the difference in trypsinogen-1 concentration is only 15-fold. This suggested that trypsinogen-2 could be used as a diagnostic marker for acute pancreatitis. In human ovarian cyst fluids tumor-associated trypsinogen-2 (TAT-2) is the predominant isoenzyme. Most notably, in mucinous cyst fluids the levels of TAT-2 were higher in borderline and malignant than in benign cases. The increased levels in association with malignancy suggested that TAT could be involved in ovarian tumor dissemination and breakage of tissue barriers. Serum samples from patients who had undergone pancreatoduodenectomy contained trypsinogen-2. Trypsinogen-1 was detected in only one of nine samples. These results suggested that the expression of trypsinogen is not restricted to the pancreas. Determination of the isoenzyme pattern by ion exchange chromatography revealed isoelectric variants of trypsinogen isoenzymes in serum samples. Intact trypsinogen isoenzymes and tryptic and chymotryptic trypsinogen peptides were purified and characterized by mass spectrometry, Western blot analysis and N-terminal sequencing. The results showed that pancreatic trypsinogen-1 and -2 are sulfated at tyrosine 154 (Tyr154), whereas TAT-2 from a colon carcinoma cell line is not. Tyr154 is located within the primary substrate binding pocket of trypsin, thus Tyr154 sulfation is likely to influence substrate binding. The previously known differences in charge, substrate specificity and inhibitor binding between pancreatic and tumor-associated trypsinogens are suggested to be caused by sulfation of Tyr154 in pancreatic trypsinogens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is an immune-mediated demyelinating disorder of the central nervous system (CNS) affecting 0.1-0.2% of Northern European descent population. MS is considered to be a multifactorial disease, both environment and genetics play a role in its pathogenesis. Despite several decades of intense research, the etiological and pathogenic mechanisms underlying MS remain still largely unknown and no curative treatment exists. The genetic architecture underlying MS is complex with multiple genes involved. The strongest and the best characterized predisposing genetic factors for MS are located, as in other immune-mediated diseases, in the major histocompatibility complex (MHC) on chromosome 6. In humans MHC is called human leukocyte antigen (HLA). Alleles of the HLA locus have been found to associate strongly with MS and remained for many years the only consistently replicable genetic associations. However, recently other genes located outside the MHC region have been proposed as strong candidates for susceptibility to MS in several studies. In this thesis a new genetic locus located on chromosome 7q32, interferon regulatory factor 5 (IRF5), was identified in the susceptibility to MS. In particular, we found that common variation of the gene was associated with the disease in three different populations, Spanish, Swedish and Finnish. We also suggested a possible functional role for one of the risk alleles with impact on the expression of the IRF5 locus. Previous studies have pointed out a possible role played by chromosome 2q33 in the susceptibility to MS and other autoimmune disorders. The work described here also investigated the involvement of this chromosomal region in MS predisposition. After the detection of genetic association with 2q33 (article-1), we extended our analysis through fine-scale single nucleotide polymorphism (SNP) mapping to define further the contribution of this genomic area to disease pathogenesis (article-4). We found a trend (p=0.04) for association to MS with an intronic SNP located in the inducible T-cell co-stimulator (ICOS) gene, an important player in the co-stimulatory pathway of the immune system. Expression analysis of ICOS revealed a novel, previously uncharacterized, alternatively spliced isoform, lacking the extracellular domain that is needed for ligand binding. The stability of the newly-identified transcript variant and its subcellular localization were analyzed. These studies indicated that the novel isoform is stable and shows different subcellular localization as compared to full-length ICOS. The novel isoform might have a regulatory function, but further studies are required to elucidate its function. Chromosome 19q13 has been previously suggested as one of the genomic areas involved in MS predisposition. In several populations, suggestive linkage signals between MS predisposition and 19q13 have been obtained. Here, we analysed the role of allelic variation in 19q13 by family based association analysis in 782 MS families collected from Finland. In this dataset, we were not able to detect any statistically significant associations, although several previously suggested markers were included to the analysis. Replication of the previous findings on the basis of linkage disequilibrium between marker allele and disease/risk allele appears notoriously difficult because of limitations such as allelic heterogeneity. Re-sequencing based approaches may be required for elucidating the role of chromosome 19q13 with MS. This thesis has resulted in the identification of a new MS susceptibility locus (IRF5) previously associated with other inflammatory or autoimmune disorders, such as SLE. IRF5 is one of the mediators of interferons biological function. In addition to providing new insight in the possible pathogenetic pathway of the disease, this finding suggests that there might be common mechanisms between different immune-mediated disorders. Furthermore the work presented here has uncovered a novel isoform of ICOS, which may play a role in regulatory mechanisms of ICOS, an important mediator of lymphocyte activation. Further work is required to uncover its functions and possible involvement of the ICOS locus in MS susceptibility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bipolar disorder (BP) is a complex psychiatric disorder characterized by episodes of mania and depression. BP affects approximately 1% of the world’s population and shows no difference in lifetime prevalence between males and females. BP arises from complex interactions among genetic, developmental and environmental factors, and it is likely that several predisposing genes are involved in BP. The genetic background of BP is still poorly understood, although intensive and long-lasting research has identified several chromosomal regions and genes involved in susceptibility to BP. This thesis work aims to identify the genetic variants that influence bipolar disorder in the Finnish population by candidate gene and genome-wide linkage analyses in families with many BP cases. In addition to diagnosis-based phenotypes, neuropsychological traits that can be seen as potential endophenotypes or intermediate traits for BP were analyzed. In the first part of the thesis, we examined the role of the allelic variants of the TSNAX/DISC1 gene cluster to psychotic and bipolar spectrum disorders and found association of distinct allelic haplotypes with these two groups of disorders. The haplotype at the 5’ end of the Disrupted-in-Schizophrenia-1 gene (DISC1) was over-transmitted to males with psychotic disorder (p = 0.008; for an extended haplotype p = 0.0007 with both genders), whereas haplotypes at the 3’ end of DISC1 associated with bipolar spectrum disorder (p = 0.0002; for an extended haplotype p = 0.0001). The variants of these haplotypes also showed association with different cognitive traits. The haplotypes at the 5’ end associated with perseverations and auditory attention, while the variants at the 3’ end associated with several cognitive traits including verbal fluency and psychomotor processing speed. Second, in our complete set of BP families with 723 individuals we studied six functional candidate genes from three distinct signalling systems: serotonin-related genes (SLC6A4 and TPH2), BDNF -related genes (BDNF, CREB1 and NTRK2) and one gene related to the inflammation and cytokine system (P2RX7). We replicated association of the functional variant Val66Met of BDNF with BP and better performance in retention. The variants at the 5’ end of SLC6A4 also showed some evidence of association among males (p = 0.004), but the widely studied functional variants did not yield any significant results. A protective four-variant haplotype on P2RX7 showed evidence of association with BP and executive functions: semantic and phonemic fluency (p = 0.006 and p = 0.0003, respectively). Third, we analyzed 23 bipolar families originating from the North-Eastern region of Finland. A genome-wide scan was performed using the 6K single nucleotide polymorphism (SNP) array. We identified susceptibility loci at chromosomes 7q31 with a LOD score of 3.20 and at 9p13.1 with a LOD score of 4.02. We followed up both linkage findings in the complete set of 179 Finnish bipolar families. The finding on chromosome 9p13 was supported (maximum LOD score of 3.02), but the susceptibility gene itself remains unclarified. In the fourth part of the thesis, we wanted to test the role of the allelic variants that have associated with bipolar disorder in recent genome-wide association studies (GWAS). We could confirm findings for the DFNB31, SORCS2, SCL39A3, and DGKH genes. The best signal in this study comes from DFNB31, which remained significant after multiple testing corrections. Two variants of SORCS2 were allelic replications and presented the same signal as the haplotype analysis. However, no association was detected with the PALB2 gene, which was the most significantly associated region in the previous GWAS. Our results indicate that BP is heterogeneous and its genetic background may accordingly vary in different populations. In order to fully understand the allelic heterogeneity that underlies common diseases such as BP, complete genome sequencing for many individuals with and without the disease is required. Identification of the specific risk variants will help us better understand the pathophysiology underlying BP and will lead to the development of treatments with specific biochemical targets. In addition, it will further facilitate the identification of environmental factors that alter risk, which will potentially provide improved occupational, social and psychological advice for individuals with high risk of BP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acute intermittent porphyria (AIP, MIM #176000) is an inherited metabolic disease due to a partial deficiency of the third enzyme, hydroxymethylbilane synthase (HMBS, EC: 4.3.1.8), in the haem biosynthesis. Neurological symptoms during an acute attack, which is the major manifestation of AIP, are variable and relatively rare, but may endanger a patient's life. In the present study, 12 Russian and two Finnish AIP patients with severe neurological manifestations during an acute attack were studied prospectively from 1995 to 2006. Autonomic neuropathy manifested as abdominal pain (88%), tachycardia (94%), hypertension (75%) and constipation (88%). The most common neurological sign was acute motor peripheral neuropathy (PNP, 81%) often associated with neuropathic sensory loss (54%) and CNS involvement (85%). Despite heterogeneity of the neurological manifestations in our patients with acute porphyria, the major pattern of PNP associated with abdominal pain, dysautonomia, CNS involvement and mild hepatopathy could be demonstrated. If more strict inclusion criteria for biochemical abnormalities (>10-fold increase in excretion of urinary PBG) are applied, neurological manifestations in an acute attack are probably more homogeneous than described previously, which suggests that some of the neurological patients described previously may not have acute porphyria but rather secondary porphyrinuria. Screening for acute porphyria using urinary PBG is useful in a selected group of neurological patients with acute PNP or encephalopathy and seizures associated with pain and dysautonomia. Clinical manifestations and the outcome of acute attacks were used as a basis for developing a 30-score scale of the severity of an acute attack. This scale can easily be used in clinical practice and to standardise the outcome of an attack. Degree of muscle weakness scored by MRC, prolonged mechanical ventilation, bulbar paralysis, impairment of consciousness and hyponatraemia were important signs of a poor prognosis. Arrhythmia was less important and autonomic dysfunction, severity of pain and mental symptoms did not affect the outcome. The delay in the diagnosis and repeated administrations of precipitating factors were the main cause of proceeding of an acute attack into pareses and severe CNS involvement and a fatal outcome in two patients. Nerve conduction studies and needle EMG were performed in eleven AIP patients during an acute attack and/or in remission. Nine patients had severe PNP and two patients had an acute encephalopathy but no clinically evident PNP. In addition to axonopathy, features suggestive of demyelination could be demonstrated in patients with severe PNP during an acute attack. PNP with a moderate muscle weakness was mainly pure axonal. Sensory involvement was common in acute PNP and could be subclinical. Decreased conduction velocities with normal amplitudes of evoked potentials during acute attacks with no clinically evident PNP indicated subclinical polyneuropathy. Reversible symmetrical lesions comparable with posterior reversible encephalopathy syndrome (PRES) were revealed in two patients' brain CT or MRI during an acute attack. In other five patients brain MRI during or soon after the symptoms was normal. The frequency of reversible brain oedema in AIP is probably under-estimated since it may be short-lasting and often indistinguishable on CT or MRI. In the present study, nine different mutations were identified in the HMBS gene in 11 unrelated Russian AIP patients from North Western Russia and their 32 relatives. AIP was diagnosed in nine symptom-free relatives. The majority of the mutations were family-specific and confirmed allelic heterogeneity also among Russian AIP patients. Three mutations, c.825+5G>C, c.825+3_825+6del and c.770T>C, were novel. Six mutations, c.77G>A (p.R26H), c.517C>T (p.R173W), c.583C>T (p.R195C), c.673C>T (p.R225X), c.739T>C (p.C247R) and c.748G>C (p.E250A), have previously been identified in AIP patients from Western and other Eastern European populations. The effects of novel mutations were studied by amplification and sequencing of the reverse-transcribed total RNA obtained from the patients' lymphoblastoid or fibroblast cell lines. The mutations c.825+5G>C and c.770T>C resulted in varyable amounts of abnormal transcripts, r.822_825del (p.C275fsX2) and [r.770u>c, r.652_771del, r.613_771del (p.L257P, p.G218_L257del, p.I205_L257del)]. All mutations demonstrated low residual activities (0.1-1.3 %) when expressed in COS-1 cells confirming the causality of the mutations and the enzymatic defect of the disease. The clinical outcome, prognosis and correlation between the HMBS genotype and phenotype were studied in 143 Finnish and Russian AIP patients with ten mutations (c.33G>T, c.97delA, InsAlu333, p.R149X, p.R167W, p.R173W, p.R173Q, p.R225G, p.R225X, c.1073delA) and more than six patients in each group. The patients were selected from the pool of 287 Finnish AIP patients presented in a Finnish Porphyria Register (1966-2003) and 23 Russian AIP patients (diagnosed 1995-2003). Patients with the p.R167W and p.R225G mutations showed lower penetrance (19% and 11%) and the recurrence rate (33% and 0%) in comparison to the patients with other mutations (range 36 to 67% and 0 to 66%, respectively), as well as milder biochemical abnormalities [urinary porphobilinogen 47±10 vs. 163±21 mol/L, p<0.001; uroporphyrin 130±40 vs. 942±183 nmol/L, p<0.001] suggesting a milder form of AIP in these patients. Erythrocyte HMBS activity did not correlate with the porphobilinogen excretion in remission or the clinical of the disease. In all AIP severity patients, normal PBG excretion predicted freedom from acute attacks. Urinary PBG excretion together with gender, age at the time of diagnosis and mutation type could predict the likelihood of acute attacks in AIP patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The systemic autoinflammatory disorders are a group of rare diseases characterized by periodically recurring episodes of acute inflammation and a rise in serum acute phase proteins, but with no signs of autoimmunity. At present eight hereditary syndromes are categorized as autoinflammatory, although the definition has also occasionally been extended to other inflammatory disorders, such as Crohn s disease. One of the autoinflammatory disorders is the autosomally dominantly inherited tumour necrosis factor receptor-associated periodic syndrome (TRAPS), which is caused by mutations in the gene encoding the tumour necrosis factor type 1 receptor (TNFRSF1A). In patients of Nordic descent, cases of TRAPS and of three other hereditary fevers, hyperimmunoglobulinemia D with periodic fever syndrome (HIDS), chronic infantile neurologic, cutaneous and articular syndrome (CINCA) and familial cold autoinflammatory syndrome (FCAS), have been reported, TRAPS being the most common of the four. Clinical characteristics of TRAPS are recurrent attacks of high spiking fever, associated with inflammation of serosal membranes and joints, myalgia, migratory rash and conjunctivitis or periorbital cellulitis. Systemic AA amyloidosis may occur as a sequel of the systemic inflammation. The aim of this study was to investigate the genetic background of hereditary periodically occurring fever syndromes in Finnish patients, to explore the reliability of determining serum concentrations of soluble TNFRSF1A and metalloproteinase-induced TNFRSF1A shedding as helpful tools in differential diagnostics, as well as to study intracellular NF-κB signalling in an attempt to widen the knowledge of the pathomechanisms underlying TRAPS. Genomic sequencing revealed two novel TNFRSF1A mutations, F112I and C73R, in two Finnish families. F112I was the first TNFRSF1A mutation to be reported in the third extracellular cysteine-rich domain of the gene and C73R was the third novel mutation to be reported in a Finnish family, with only one other TNFRSF1A mutation having been reported in the Nordic countries. We also presented a differential diagnostic problem in a TRAPS patient, emphasizing for the clinician the importance of differential diagnostic vigiliance in dealing with rare hereditary disorders. The underlying genetic disease of the patient both served as a misleading factor, which possibly postponed arrival at the correct diagnosis, but may also have predisposed to the pathologic condition, which led to a critical state of the patient. Using a method of flow cytometric analysis modified for the use on fresh whole blood, we studied intracellular signalling pathways in three Finnish TRAPS families with the F112I, C73R and the previously reported C88Y mutations. Evaluation of TNF-induced phosphorylation of NF-κB and p38, revealed low phosphorylation profiles in nine out of ten TRAPS patients in comparison to healthy control subjects. This study shows that TRAPS is a diagnostic possibility in patients of Nordic descent, with symptoms of periodically recurring fever and inflammation of the serosa and joints. In particular in the case of a family history of febrile episodes, the possibility of TRAPS should be considered, if an etiology of autoimmune or infectious nature is excluded. The discovery of three different mutations in a population as small as the Finnish, reinforces the notion that the extracellular domain of TNFRSF1A is prone to be mutated at the entire stretch of its cysteine-rich domains and not only at a limited number of sites, suggesting the absence of a founder effect in TRAPS. This study also demonstrates the challenges of clinical work in differentiating the symptoms of rare genetic disorders from those of other pathologic conditions and presents the possibility of an autoinflammatory disorder as being the underlying cause of severe clinical complications. Furthermore, functional studies of fresh blood leukocytes show that TRAPS is often associated with a low NF-κB and p38 phosphorylation profile, although low phosphorylation levels are not a requirement for the development of TRAPS. The aberrant signalling would suggest that the hyperinflammatory phenotype of TRAPS is the result of compensatory NF-κB-mediated regulatory mechanisms triggered by a deficiency of the innate immune response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A repetitive sequence collection is one where portions of a base sequence of length n are repeated many times with small variations, forming a collection of total length N. Examples of such collections are version control data and genome sequences of individuals, where the differences can be expressed by lists of basic edit operations. Flexible and efficient data analysis on a such typically huge collection is plausible using suffix trees. However, suffix tree occupies O(N log N) bits, which very soon inhibits in-memory analyses. Recent advances in full-text self-indexing reduce the space of suffix tree to O(N log σ) bits, where σ is the alphabet size. In practice, the space reduction is more than 10-fold, for example on suffix tree of Human Genome. However, this reduction factor remains constant when more sequences are added to the collection. We develop a new family of self-indexes suited for the repetitive sequence collection setting. Their expected space requirement depends only on the length n of the base sequence and the number s of variations in its repeated copies. That is, the space reduction factor is no longer constant, but depends on N / n. We believe the structures developed in this work will provide a fundamental basis for storage and retrieval of individual genomes as they become available due to rapid progress in the sequencing technologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bone mass accrual and maintenance are regulated by a complex interplay between genetic and environmental factors. Recent studies have revealed an important role for the low-density lipoprotein receptor-related protein 5 (LRP5) in this process. The aim of this thesis study was to identify novel variants in the LRP5 gene and to further elucidate the association of LRP5 and its variants with various bone health related clinical characteristics. The results of our studies show that loss-of-function mutations in LRP5 cause severe osteoporosis not only in homozygous subjects but also in the carriers of these mutations, who have significantly reduced bone mineral density (BMD) and increased susceptibility to fractures. In addition, we demonstrated for the first time that a common polymorphic LRP5 variant (p.A1330V) was associated with reduced peak bone mass, an important determinant of BMD and osteoporosis in later life. The results from these two studies are concordant with results seen in other studies on LRP5 mutations and in association studies linking genetic variation in LRP5 with BMD and osteoporosis. Several rare LRP5 variants were identified in children with recurrent fractures. Sequencing and multiplex ligation-dependent probe amplification (MLPA) analyses revealed no disease-causing mutations or whole-exon deletions. Our findings from clinical assessments and family-based genotype-phenotype studies suggested that the rare LRP5 variants identified are not the definite cause of fractures in these children. Clinical assessments of our study subjects with LPR5 mutations revealed an unexpectedly high prevalence of impaired glucose tolerance and dyslipidaemia. Moreover, in subsequent studies we discovered that common polymorphic LRP5 variants are associated with unfavorable metabolic characteristics. Changes in lipid profile were already apparent in pre-pubertal children. These results, together with the findings from other studies, suggest an important role for LRP5 also in glucose and lipid metabolism. Our results underscore the important role of LRP5 not only in bone mass accrual and maintenance of skeletal health but also in glucose and lipid metabolism. The role of LRP5 in bone metabolism has long been studied, but further studies with larger study cohorts are still needed to evaluate the specific role of LRP5 variants as metabolic risk factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dynamics of raw milk associated bacteria during cold storage of raw milk and their antibiotic resistance was reviewed, with focus on psychrotrophic bacteria. This study aimed to investigate the significance of cold storage of raw milk on antibiotic-resistant bacterial population and analyse the antibiotic resistance of the Gram-negative antibiotic-resistant psychrotrophic bacteria isolated from the cold-stored raw milk samples. Twenty-four raw milk samples, six at a time, were obtained from lorries that collected milk from Finnish farms and were stored at 4°C/4 d, 6°C/3 d and 6°C/4 d. Antibiotics representing four classes of antibiotics (gentamicin, ceftazidime, levofloxacin and trimethoprim-sulfamethoxazole) were used to determine the antibiotic resistance of mesophilic and psychrotrophic bacteria during the storage period. A representative number of antibiotic-resistant Gram-negative isolates retrieved from the cold-stored raw milk samples were identified by the phenotypic API 20 NE system and a few isolates by the 16S rDNA gene sequencing. Some of the isolates were further evaluated for their antibiotic resistance by the ATB PSE 5 and HiComb system. The initial average mesophilic counts were found below 105 CFU/mL, suggesting that the raw milk samples were of good quality. However, the mesophilic and psychrotrophic population increased when stored at 4°C/4 d, 6°C/3 d and 6°C/4 d. Gentamicin- and levofloxacin-resistant bacteria increased moderately (P < 0.05) while there was a considerable rise (P < 0.05) of ceftazidime- and trimethoprim-sulfamethoxazole-resistant population during the cold storage. Of the 50.9 % (28) of resistant isolates (total 55) identified by API 20 NE, the majority were Sphingomonas paucimobilis (8), Pseudomonas putida (5), Sphingobacterium spiritivorum (3) and Acinetobacter baumanii (2). The analysis by ATB PSE 5 system suggested that 57.1% of the isolates (total 49) were multiresistant. This study showed that the dairy environment harbours multidrug-resistant Gramnegative psychrotrophic bacteria and the cold chain of raw milk storage amplifies the antibioticresistant psychrotrophic bacterial population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fish farming introduces nutrients, microbes and a wide variety of chemicals such as heavy metals, antifoulants and antibiotics to the surrounding environment. Introduction of antibiotics has been linked with the increased incidence of antibiotic resistant pathogenic bacteria in the farm vicinities. In this thesis molecular methods such as quantitative PCR and DNA sequencing were applied to analyze bacterial communities in sediments from fish farms and pristine locations. Altogether four farms and four pristine sites were sampled in the Baltic Sea. Two farm and two pristine locations were sampled over a surveillance period of four years. Furthermore, a new methodology was developed as a part of the study that permits amplifying single microbial genomes and capturing them according to any genetic traits, including antibiotic resistance genes. The study revealed that several resistance genes for tetracycline were found at the sediment underneath the aquaculture farms. The copy number of these genes remained elevated even at a farm that had not used any antibiotics since year 2000, six years before this study started. Similarly, an increase in the amount of mercury resistance gene merA was observed at the aquaculture sediment. The persistence of the resistance genes in absence of any selection pressure from antibiotics or heavy metals suggests that the genes may be introduced to the sediment by the farming process. This is also supported by the diversity pattern of the merA gene between farm and pristine sediments. The bacterial community-level changes in response to fish farming were very complex and no single phylogenetic groups were found that would be typical to fish farm sediments. However, the community structures had some correlation with the exposure to fish farming. Our studies suggest that the established approaches to deal with antibiotic resistance at the aquaculture, such as antibiotic cycling, are fundamentally flawed because they cannot prevent the introduction of the resistance genes and resistant bacteria to the farm area by the farming process. Further studies are required to study the entire fish farming process to identify the sources of the resistance genes and the resistant bacteria. The results also suggest that in order to prevent major microbiological changes in the surrounding aquatic environment, the farms should not be founded in shallow water where currents do not transport sedimenting matter from the farms. Finally, the technique to amplify and select microbial genomes will potentially have a considerable impact in microbial ecology and genomics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pituitary adenomas are common benign neoplasms. Although most of them are sporadic, a minority occurs in familial settings. Heterozygous germline mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene were found to underlie familial pituitary adenomas, a condition designated as pituitary adenoma predisposition (PAP). PAP confers incomplete penetrance of mostly growth hormone (GH) secreting adenomas in young patients, who often lack a family history of pituitary adenomas. This thesis work aimed to clarify the molecular and clinical characteristics of PAP. Applying the multiplex ligation-dependent probe amplification assay (MLPA), we found large genomic AIP deletions to account for a subset of PAP. Therefore, MLPA could be considered in PAP suspected patients with no AIP mutations found with conventional sequencing. We generated an Aip mouse model to examine pituitary tumorigenesis in vivo. The heterozygous Aip mutation conferred complete penetrance of pituitary adenomas that were mostly GH-secreting, rendering the phenotype of the Aip mouse similar to that of PAP patients. We suggest that AIP may function as a candidate gatekeeper gene in somatotrophs. To clarify molecular mechanisms of tumorigenesis, we elucidated the expression of AIP-related molecules in human and mouse pituitary tumors. The expression of aryl hydrocarbon receptor nuclear translocator (ARNT) was reduced in mouse Aip-deficient adenomas, and similar ARNT reduction was also evident in human AIP mutation positive adenomas. This suggests that in addition to participating in the hypoxia pathway, estrogen receptor signaling and xenobiotic response pathways, ARNT may play a role in AIP-related tumorigenesis. We also studied the characteristics and the response to therapy of PAP patients and found them to have an aggressive disease phenotype with young age at onset. Therefore, improvement in treatment outcomes of PAP patients would require their efficient identification and earlier diagnosis of the pituitary adenomas. The possible role of the RET proto-oncogene in tumorigenesis of familial AIP mutation negative pituitary adenomas was evaluated, but none of the found RET germline variants were considered pathogenic. Surprisingly, RET immunohistochemistry suggested possible underexpression of RET in AIP mutation positive pituitary adenomas an observation that merits further investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Both inherited genetic variations and somatically acquired mutations drive cancer development. The aim of this thesis was to gain insight into the molecular mechanisms underlying colorectal cancer (CRC) predisposition and tumor progression. Whereas one-third of CRC may develop in the context of hereditary predisposition, the known highly penetrant syndromes only explain a small fraction of all cases. Genome-wide association studies have shown that ten common single nucleotide polymorphisms (SNPs) modestly predispose to CRC. Our population-based sample series of around thousand CRC cases and healthy controls was genotyped for these SNPs. Tumors of heterozygous patients were analyzed for allelic imbalance, in an attempt to reveal the role of these SNPs in somatic tumor progression. The risk allele of rs6983267 at 8q24 was favored in the tumors significantly more often than the neutral allele, indicating that this germline variant is somatically selected for. No imbalance targeting the risk allele was observed in the remaining loci, suggesting that most of the low-penetrance CRC SNPs mainly play a role in the early stages of the neoplastic process. The ten SNPs were further analyzed in 788 CRC cases, 97 of which had a family history of CRC, to evaluate their combined contribution. A significant association appeared between the overall number of risk alleles and familial CRC and these ten SNPs seem to explain around 9% of the familial clustering of CRC. Finding more CRC susceptibility alleles may facilitate individualized risk prediction and cancer prevention in the future. Microsatellite instability (MSI), resulting from defective mismatch repair function, is a hallmark of Lynch syndrome and observed in a subset of all CRCs. Our aim was to identify microsatellite frameshift mutations that inactivate tumor suppressor genes in MSI CRCs. By sequencing microsatellite repeats of underexpressed genes we found six novel MSI target genes that were frequently mutated in 100 MSI CRCs: 51% in GLYR1, 47% in ABCC5, 43% in WDTC1, 33% in ROCK1, 30% in OR51E2, and 28% in TCEB3. Immunohistochemical staining of GLYR1 revealed defective protein expression in homozygously mutated tumors, providing further support for the loss of function hypothesis. Another mutation screening effort sought to identify MSI target genes with putative oncogenic functions. Microsatellites were similarly sequenced in genes that were overexpressed and, upon mutation, predicted to avoid nonsense-mediated mRNA decay. The mitotic checkpoint kinase TTK harbored protein-elongating mutations in 59% of MSI CRCs and the mutant protein was detected in heterozygous MSI CRC cells. No checkpoint dysregulation or defective protein localization was observable however, and the biological relevance of this mutation may hence be related to other mechanisms. In conclusion, these two large-scale and unbiased efforts identified frequently mutated genes that are likely to contribute to the development of this cancer type and may be utilized in developing diagnostic and therapeutic applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Individuals with inherited deficiency in DNA mismatch repair(MMR) (Lynch syndrome) LS are predisposed to different cancers in a non-random fashion. Endometrial cancer (EC) is the most common extracolonic malignancy in LS. LS represents the best characterized form of hereditary nonpolyposis colorectal carcinoma (HNPCC). Other forms of familial non-polyposis colon cancer exist, including familial colorectal cancer type X (FCCX). This syndrome resembles LS, but MMR gene defects are excluded and the predisposition genes are unknown so far. To address why different organs are differently susceptible to cancer development, we examined molecular similarities and differences in selected cancers whose frequency varies in LS individuals. Tumors that are common (colorectal, endometrial, gastric) and less common (brain, urological) in LS were characterized for MMR protein expression, microsatellite instability (MSI), and by altered DNA methylation. We also studied samples of histologically normal endometrium, endometrial hyperplasia,and cancer for molecular alterations to identify potential markers that could predict malignant transformation in LS and sporadic cases. Our results suggest that brain and kidney tumors follow a different pathway for cancer development than the most common LS related cancers.Our results suggest also that MMR defects are detectable in endometrial tissues from a proportion of LS mutation carriers prior to endometrial cancer development. Traditionally (complex) atypical hyperplasia has been considered critical for progression to malignancy. Our results suggest that complex hyperplasia without atypia is equally important as a precursor lesion of malignancy. Tumor profiles from Egypt were compared with colorectal tumors from Finland to evaluate if there are differences specific to the ethnic origin (East vs.West). Results showed for the first time a distinct genetic and epigenetic signature in the Egyptian CRC marked by high methylation of microsatellite stable tumors associated with advanced stage, and low frequency of Wnt signaling activation, suggesting a novel pathway. DNA samples from FCCX families were studied with genome wide linkage analysis using microsatellite markers. Selected genes from the linked areas were tested for possible mutations that could explain predisposition to a large number of colon adenomas and carcinomas seen in these families. Based on the results from the linkage analysis, a number of areas with tentative linkage were identified in family 20. We narrowed down these areas by additional microsatellite markers to found a mutation in the BMPR1A gene. Sequencing of an additional 17 FCCX families resulted in a BMPR1A mutation frequency of 2/18 families (11%). Clarification of the mechanisms of the differential tumor susceptibility in LS increases the understanding of gene and organ specific targets of MMR deficiency. While it is generally accepted that widespread MMR deficiency and consequent microsatellite instability (MSI) drives tumorigenesis in LS, the timing of molecular alterations is controversial. In particular, it is important to know that alterations may occur several years before cancer formation, at stages that are still histologically regarded as normal. Identification of molecular markers that could predict the risk of malignant transformation may be used to improve surveillance and cancer prevention in genetically predisposed individuals. Significant fractions of families with colorectal and/or endometrial cancer presently lack molecular definition altogether. Our findings expand the phenotypic spectrum of BMPR1A mutations and, for the first time, link FCCX families to the germline mutation of a specific gene. In particular, our observations encourage screening of additional families with FCCX for BMPR1A mutation, which is necessary in obtaining a reliable estimate of the share of BMPR1A-associated cases among all FCCX families worldwide. Clinically, the identification of predisposing mutations enables targeted cancer prevention in proven mutation carriers and thereby reduces cancer morbidity and mortality in the respective families.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

"We used PCR-DGGE fingerprinting and direct sequencing to analyse the response of fungal and actinobacterial communities to changing hydrological conditions at 3 different sites in a boreal peatland complex in Finland. The experimental design involved a short-term (3 years; STD) and a long-term (43 years; LTD) water-level drawdown. Correspondence analyses of DGGE bands revealed differences in the communities between natural sites representing the nutrient-rich mesotrophic fen, the nutrient-poorer oligotrophic fen, and the nutrient-poor ombrotrophic bog. Still, most fungi and actinobacteria found in the pristine peatland seemed robust to the environmental variables. Both fungal and actinobacterial diversity was higher in the fens than in the bog. Fungal diversity increased significantly after STD whereas actinobacterial diversity did not respond to hydrology. Both fungal and actinobacterial communities became more similar between peatland types after LTD, which was not apparent after STD. Most sequences clustered equally between the two main fungal phyla Ascomycota and Basidiomycota. Sequencing revealed that basidiomycetes may respond more (either positively or negatively) to hydrological changes than ascomycetes. Overall, our results suggest that fungal responses to water-level drawdown depend on peatland type. Actinobacteria seem to be less sensitive to hydrological changes, although the response of some may similarly depend on peatland type. (C) 2009 Elsevier Ltd. All rights reserved."

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Autoimmune regulator (AIRE) is the gene mutated in the human polyglandular autoimmune disease called Autoimmune polyendocrinopathy, candidiasis, and ectodermal dystrophy (APECED) that belongs to the Finnish disease heritage. Murine Aire has been shown to be important in the generation of the T cell central tolerance in the thymus by promoting the expression of ectopic tissue-specific antigens in the thymic medulla. Aire is also involved in the thymus tissue organization during organogenesis. In addition to the thymus, AIRE/Aire is expressed in the secondary lymphoid organs. Accordingly, a role for AIRE/Aire in the maintenance of peripheral tolerance has been suggested. Peripheral tolerance involves mechanisms that suppress immune responses in secondary lymphoid organs. Regulatory T cells (Tregs) are an important suppressive T cell population mediating the peripheral tolerance. Tregs are generated in the thymus but also in the peripheral immune system T cells can acquire the Treg-phenotype. The aim of this study was to characterize Tregs in APECED patients and in the APECED mouse model (Aire-deficient mice). In the mouse model, it was possible to separate Aire expression in the thymus and in the secondary lymphoid organs. The relative importance of thymic and peripheral Aire expression in the maintenance of immunological tolerance was studied in an experimental model that was strongly biased towards autoimmunity, i.e. lymphopenia-induced proliferation (LIP) of lymphocytes. This experimental model was also utilised to study the behaviour of T cells with dual-specific T cell receptors (TCR) during the proliferation. The Treg phenotype was studied by flow cytometry and relative gene expression with real-time polymerase chain reaction. TCR repertoires of the Tregs isolated from APECED patients and healthy controls were also compared. The dual-specific TCRs were studied with the TCR repertoire analysis that was followed with sequencing of the chosen TCR genes in order to estimate changes in the dual-specific TCR diversity. The Treg function was tested with an in vitro suppression assay. The APECED patients had normal numbers of Tregs but the phenotype and suppressive functions of the Tregs were impaired. In order to separate Aire functions in the thymus from its yet unknown role in the secondary lymphoid organs, the phenomenon of LIP was utilised. In this setting, the lymphocytes that are adoptively transferred to a lymphopenic recipient proliferate to stimuli from self-originating antigens. This proliferation can result in autoimmunity if peripheral tolerance is not fully functional. When lymphocytes that had matured without Aire in the thymus were transferred to lymphopenic Aire-sufficient recipients, no clinical autoimmunity followed. The Aire-deficient donor-originating lymphocytes hyperproliferated, and other signs of immune dysregulation were also found in the recipients. Overt autoimmunity, however, was prevented by the Aire-deficient donor-originating Tregs that hyperproliferated in the recipients. Aire-deficient lymphopenic mice were used to study whether peripheral loss of Aire had an impact on the maintenance of peripheral tolerance. When normal lymphocytes were transferred to these Aire-deficient lymphopenic recipients, the majority of recipients developed a clinically symptomatic colitis. The colitis was confirmed also by histological analysis of the colon tissue sections. In the Aire-deficient lymphopenic recipients Tregs were proliferating significantly less than in the control group s recipients that had normal Aire expression in their secondary lymphoid organs. This study shows that Aire is not only important in the central tolerance but is also has a significant role in the maintenance of the peripheral tolerance both in mice and men. Aire expressed in the secondary lymphoid organs is involved in the functions of Tregs during an immune response. This peripheral expression appears to be relatively more important in some situations since only those lymphopenic recipients that had lost peripheral expression of Aire developed a symptomatic autoimmune disease. This AIRE-related Treg defect could be clinically important in understanding the pathogenesis of APECED.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phlebiopsis gigantea has been for a long time known as a strong competitor against Heterobasidion annosum and intensively applied as a biological control agent on stump surfaces of Picea abies in Fennoscandia. However, the mechanism underlying its antagonistic activity is still unknown. A primary concern is the possible impact of P. gigantea treatment on resident non-target microbial biota of conifer stumps. Additional risk factor is the potential of P. gigantea to acquire a necrotrophic habit through adaptation to living wood tissues. This study focused on the differential screening of several P. gigantea isolates from diverse geographical sources as well as the use of breeding approach to enhance the biocontrol efficacy against H. annosum infection. The results showed a significant positive correlation between growth rate in wood and high biocontrol efficacy. Furthermore, with aid of breeding approach, several progeny strains were obtained that had better growth rate and control efficacy than parental isolates. To address the issue of the potential of P. gigantea to acquire necrotrophic capability, a combination of histochemical, molecular and transcript profiling (454 sequencing) were used to investigate the interactions between these two fungi and ten year old P. sylvestris seedlings. The results revealed that both P. gigantea and H. annosum provoked strong necrotic lesions, but after prolonged incubation, P. gigantea lesions shrank and ceased to expand further. Tree seedlings pre-treated with P. gigantea further restricted H. annosum-induced necrosis and had elevated transcript levels of genes important for lignification, cell death regulation and jasmonic acid signalling. These suggest that induced localized resistance is a contributory factor for the biocontrol efficacy of P.gigantea, and it has a comparatively limited necrotrophic capability than H. annosum. Finally, to investigate the potential impact of P. gigantea on the stump bacterial biota, 16S rDNA isolated from tissue samples from stumps of P. abies after 1-, 6- and 13-year post treatment was sequenced using bar-coded 454 Titanium pyrosequencing. Proteobacteria were found to be the most abundant at the initial stages of stump decay but were selectively replaced by Acidobacteria at advanced stages of the decay. Moreover, P. gigantea treatment significantly decreased the bacterial richness at initial decay stage in the stumps. Over time, the bacterial community in the stumps gradually recovered and the negative effects of P. gigantea was attenuated.