24 resultados para cancer adjuvant therapy

em Helda - Digital Repository of University of Helsinki


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Gene therapy is a promising novel approach for treating cancers resistant to or escaping currently available modalities. Treatment approaches are based on taking advantage of molecular differences between normal and tumor cells. Various strategies are currently in clinical development with adenoviruses as the most popular vehicle. Recent developments include improving targeting strategies for gene delivery to tumor cells with tumor specific promoters or infectivity enhancement. A rapidly developing field is as well replication competent agents, which allow improved tumor penetration and local amplification of the anti-tumor effect. Adenoviral cancer gene therapy approaches lack cross-resistance with other treatment options and therefore synergistic effects are possible. This study focused on development of adenoviral vectors suitable for treatment of various gynecologic cancer types, describing the development of the field from non-replicating adenoviral vectors to multiple-modified conditional replicating viruses. Transcriptional targeting of gynecologic cancer cells by the use of the promoter of vascular endothelial growth factor receptor type 1 (flt-1) was evaluated. Flt-1 is not expressed in the liver and thus an ideal promoter for transcriptional targeting of adenoviruses. Our studies implied that the flt-1 promoter is active in teratocarcinomas.and therefore a good candidate for development of oncolytic adenoviruses for treatment of this often problematic disease with then poor outcome. A tropism modified conditionally replicating adenovirus (CRAd), Ad5-Δ24RGD, was studied in gynecologic cancers. Ad5-Δ24RGD is an adenovirus selectively replication competent in cells defective in the p16/Rb pathway, including many or most tumor cells. The fiber of Ad5-Δ24RGD contains an integrin binding arginine-glycine-aspartic acid motif (RGD-4C), allowing coxackie-adenovirus receptor independent infection of cancer cells. This approach is attractive because expression levels of CAR are highly variable and often low on primary gynecological cancer cells. Oncolysis could be shown for a wide variety of ovarian and cervical cancer cell lines as well as primary ovarian cancer cell spheroids, a novel system developed for in vitro analysis of CRAds on primary tumor substrates. Biodistribution was evaluated and preclinical safety data was obtained by demonstrating lack of replication in human peripheral blood mononuclear cells. The efficicacy of Ad5-Δ24RGD was shown in different orthotopic murine models including a highly aggressive intraperitoneal model of disseminated ovarian cancer cells, where Ad5-Δ24RGD resulted in complete eradication of intraperitoneal disease in half of the mice. To further improve the selectivity and specificity of CRAds, triple-targeted oncolytic adenoviruses were cloned, featuring the cyclo-oxygenase-2 (cox-2) promoter, E1A transcomplementation and serotype chimerism. Those viruses were evaluated on ovarian cancer cells for specificity and oncolytic potency with regard to two different cox2 versions and three different variants of E1A (wild type, delta24 and delta2delta24). Ad5/3cox2Ld24 emerged as the best combination due to enhanced selectivity without potency lost in vitro or in an aggressive intraperitoneal orthotopic ovarian tumor model. In summary, the preclinical therapeutic efficacy of the CRAds tested in this study, taken together with promising biodistribution and safety data, suggest that these CRAds are interesting candidates for translation into clinical trials for gynecologic cancer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Metastatic kidney and breast cancer are devastating diseases currently lacking efficient treatment options. One promising developmental approach in cancer treatment are oncolytic adenoviruses, which have demonstrated excellent safety in many clinical trials. However, antitumor efficacy needs to be improved in order to make oncolytic viruses a viable treatment alternative. To be able to follow oncolytic virus replication in vivo, we set up a non-invasive imaging system based on coinjection of a replication deficient luciferase expressing virus and a replication competent virus. The system was validated in vitro and in vivo and used in other projects of the thesis. In another study we showed that capsid modifications on adenoviruses result in enhanced gene transfer and increased oncolytic effect on renal cancer cells in vitro. Moreover, capsid modified oncolytic adenoviruses demonstrated significantly improved antitumor efficacy in murine kidney cancer models. To transcriptionally target kidney cancer tissue we evaluated two hypoxia response elements for their usability as tissue specific promoters using a novel dual luciferase imaging system. Based on the results of the promoter evaluation and the studies on capsid modifications, we constructed a transcriptionally and transductionally targeted oncolytic adenovirus armed with an antiangiogenic transgene for enhanced renal cell cancer specificity and improved antitumor efficacy. This virus exhibited kidney cancer specific replication and significantly improved antitumor effect in a murine model of intraperitoneal disseminated renal cell cancer. Cancer stem cells are thought to be resistant to conventional cancer drugs and might play an important role in breast cancer relapse and the formation of metastasis. Therefore, we examined if capsid modified oncolytic adenoviruses are able to kill these cells proposed to be breast cancer initiating. Efficient oncolytic effect and significant antitumor efficacy on tumors established with breast cancer initiating cells was observed, suggesting that oncolytic adenoviruses might be able to prevent breast cancer relapse and could be used in the treatment of metastatic disease. In conclusion, the results presented in this thesis suggest that genetically engineered oncolytic adenoviruses have great potential in the treatment of metastatic kidney and breast cancer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cancer is a devastating disease with poor prognosis and no curative treatment, when widely metastatic. Conventional therapies, such as chemotherapy and radiotherapy, have efficacy but are not curative and systemic toxicity can be considerable. Almost all cancers are caused due to changes in the genetic material of the transformed cells. Cancer gene therapy has emerged as a new treatment option, and past decades brought new insights in developing new therapeutic drugs for curing cancer. Oncolytic viruses constitute a novel therapeutic approach given their capacity to replicate in and kill specifically tumor cells as well as reaching tumor distant metastasis. Adenoviral gene therapy has been suggested to cause liver toxicity. This study shows that new developed adenoviruses, in particular Ad5/19p-HIT, can be redirected towards kidney while adenovirus uptake by liver is minimal. Moreover, low liver transduction resulted in a favorable tumor to liver ratio of virus load. Further, we established a new immunocompetent animal model Syrian hamsters. Wild type adenovirus 5 was found to replicate in Hap-T1 hamster tumors and normal tissues. There are no antiviral drugs available to inhibit adenovirus replication. In our study, chlorpromazine and cidofovir efficiently abrogated virus replication in vitro and showed significant reduction in vivo in tumors and liver. Once safety concerns were addressed together with the new given antiviral treatment options, we further improved oncolytic adenoviruses for better tumor penetration, local amplification and host system modulation. Further, we created Ad5/3-9HIF-Δ24-VEGFR-1-Ig, oncolytic adenovirus for improved infectivity and antiangiogenic effect for treatment of renal cancer. This virus exhibited increased anti-tumor effect and specific replication in kidney cancer cells. The key player for good efficacy of oncolytic virotherapy is the host immune response. Thus, we engineered a triple targeted adenovirus Ad5/3-hTERT-E1A-hCD40L, which would lead to tumor elimination due to tumor-specific oncolysis and apoptosis together with an anti-tumor immune response prompted by the immunomodulatory molecule. In conclusion, the results presented in this thesis constitute advances in our understanding of oncolytic virotherapy by successful tumor targeting, antiviral treatment options as a safety switch in case of replication associated side-effects, and modulation of the host immune system towards tumor elimination.  

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Advanced stage head and neck cancers (HNC) with distant metastasis, as well as prostate cancers (PC), are devastating diseases currently lacking efficient treatment options. One promising developmental approach in cancer treatment is the use of oncolytic adenoviruses, especially in combination therapy with conventional cancer therapies. The safety of the approach has been tested in many clinical trials. However, antitumor efficacy needs to be improved in order to establish oncolytic viruses as a viable treatment alternative. To be able to test in vivo the effects on anti-tumor efficiency of a multimodal combination therapy of oncolytic adenoviruses with the standard therapeutic combination of radiotherapy, chemotherapy and Cetuximab monoclonal antibody (mAb), a xenograft HNC tumor model was developed. This model mimics the typical clinical situation as it is initially sensitive to cetuximab, but resistance develops eventually. Surprisingly, but in agreement with recent findings for chemotherapy and radiotherapy, a higher proportion of cells positive for HNC cancer stem cell markers were found in the tumors refractory to cetuximab. In vitro as well as in vivo results found in this study support the multimodal combination therapy of oncolytic adenoviruses with chemotherapy, radiotherapy and monoclonal antibody therapy to achieve increased anti-tumor efficiency and even complete tumor eradication with lower treatment doses required. In this study, it was found that capsid modified oncolytic viruses have increased gene transfer to cancer cells as well as an increased antitumor effect. In order to elucidate the mechanism of how oncolytic viruses promote radiosensitization of tumor cells in vivo, replicative deficient viruses expressing several promising radiosensitizing viral proteins were tested. The results of this study indicated that oncolytic adenoviruses promote radiosensitization by delaying the repair of DNA double strand breaks in tumor cells. Based on the promising data of the first study, two tumor double-targeted oncolytic adenoviruses armed with the fusion suicide gene FCU1 or with a fully human mAb specific for human Cytotoxic T Lymphocyte-Associated Antigen 4 (CTLA-4) were produced. FCU1 encodes a bifunctional fusion protein that efficiently catalyzes the direct conversion of 5-FC, a relatively nontoxic antifungal agent, into the toxic metabolites 5-fluorouracil and 5-fluorouridine monophosphate, bypassing the natural resistance of certain human tumor cells to 5-fluorouracil. Anti-CTLA4 mAb promotes direct killing of tumor cells via apoptosis and most importantly immune system activation against the tumors. These armed oncolytic viruses present increased anti-tumor efficacy both in vitro and in vivo. Furthermore, by taking advantage of the unique tumor targeted gene transfer of oncolytic adenoviruses, functional high tumor titers but low systemic concentrations of the armed proteins were generated. In addition, supernatants of tumor cells infected with Ad5/3-24aCTLA4, which contain anti-CTLA4 mAb, were able to effectively immunomodulate peripheral blood mononuclear cells (PBMC) of cancer patients with advanced tumors. -- In conclusion, the results presented in this thesis suggest that genetically engineered oncolytic adenoviruses have great potential in the treatment of advanced and metastatic HNC and PC.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Adenoviral gene therapy is an experimental approach to cancer refractory to standard cancer therapies. Adenoviruses can be utilized as vectors to deliver therapeutic transgenes into cancer cells, while gene therapy with oncolytic adenoviruses exploits the lytic potential of viruses to kill tumor cells. Although adenoviruses demonstrate several advantages over other vectors - such as the unparalleled transduction efficacy and natural tropism to a wide range of tissues - the gene transfer efficacy to cancer cells has been limited, consequently restricting the therapeutic effect. There are, however, several approaches to circumvent this problem. We utilized different modified adenoviruses to obtain information on adenovirus tropism towards non-small cell lung cancer (NSCLC) cells. To enhance therapeutic outcome, oncolytic adenoviruses were evaluated. Further, to enhance gene delivery to tumors, we used mesenchymal stem cells (MSCs) as carriers. To improve adenovirus specificity, we investigated whether widely used cyclooxygenase 2 (Cox-2) promoter is induced by adenovirus infection in nontarget cells and whether selectivity can be retained by the 3 untranslated region (UTR) AU-rich elements. In addition, we investigated whether switching adenovirus fiber can retain gene delivery in the presence of neutralizing antibodies. Our results show that adenoviruses, whose capsids were modified with arginine-glycine-aspartatic acid (RGD-4C), the serotype 3 knob, or polylysins displayed enhanced gene transfer into NSCLC cell lines and fresh clinical specimens from patients. The therapeutic efficacy was further improved by using respective oncolytic adenoviruses with isogenic 24bp deletion in the E1A gene. Cox-2 promoter was also shown to be induced in normal and tumor cells following adenovirus infection, but utilization of 3 UTR elements can increase the tumor specificity of the promoter. Further, the results suggested that use of MSCs could enhance the bioavailability and delivery of adenoviruses into human tumors, although cells had no tumor tropism per se. Finally, we demonstrated that changing adenovirus fiber can allow virus to escape from existing neutralizing antibodies when delivered systemically. In conclusion, these results reveal that adenovirus gene transfer and specificity can be increased by using modified adenoviruses and MSCs as carriers, and fiber modifications simultaneously decrease the effect of neutralizing antibodies. This promising data suggest that these approaches could translate into clinical testing in patients with NSCLC refractory to current modalities.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The incidence of gastric cancer in the last decades has declined rapidly in the industrialised countries. Worldwide, however, gastric cancer is still the second most common cause of cancer death. Although surgery is currently the most effective treatment, the rapid progress in adjuvant chemotherapy and radiation therapy requires a re-evaluation of prognosis assessment. The TNM staging system of the UICC is ubiquitously used; it groups patients by decreasing survival times from stage I to stage IV based on the spread of disease, i.e. depth of tumour penetration (T), extent of spread to lymph nodes (N), and the presence or absence of distant (M) metastases. This is by far the most consistent prognostic classification system today. However, even within the stage groups there are patients that follow a varying course of disease. Our knowledge of the molecular differences between tumours of the same stage and morphology has been accumulating over the years and methods for a more accurate assessment of the phenotype of neoplasias are of value when evaluating the prognosis of individual patients with gastric cancer. In this study, the immunohistochemical expression of tumour markers involved in different phases in tumourigenesis was examined. The aim was to find new markers which could provide prognostic information in addition to what is provided by the TNM variables. A total of 337 specimens from the primary tumour of patients who underwent surgery for gastric cancer were collected and the immunohistochemical expression of seven different biomarkers was analysed. DNA ploidy and S-phase fraction (SPF) was assessed by flow cytometry. Finally, all biomarkers and clinicopathological prognostic factors were combined and evaluated by a multivariate Cox regression model to elucidate which specific factors provide independent prognostic information. By univariate survival analysis the following variables were significant prognostic factors: epithelial and stromal syndecan-1 expression, stromal tenascin-C expression, expression of tumour-associated trypsin inhibitor (TATI) in cancer cells, nuclear p53 expression, nuclear p21 expression, DNA ploidy, and SPF. By multivariate survival analysis adjusted for all available clinicopathological and biomolecular variables, p53 expression, p21 expression, and DNA ploidy emerged as independent prognostic biomarkers, together with penetration depth of the tumour, presence of nodal metastases, surgical cure of the cancer, and age of the patient at the time of diagnosis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The possible carcinogenic risk of immunosuppressive therapies is an important issue in everyday clinical practise. Carcinogenesis is a slow multi step procedure, thus a long latency period is needed before cancer develops. PUVA therapy is used for many skin diseases including psoriasis, early stage cutaneous T cell lymphoma, atopic dermatitis, palmoplantar pustulosis and chronic eczema. There has been concern about the increased melanoma risk associated to PUVA therapy, which has previously been associated with an increased risk on non-melanoma skin cancer, especially squamous cell carcinoma. The increased risk of basal cell carcinoma (BCC) is also documented but it is modest compared to squamous cell carcinoma (SCC). This thesis evaluated melanoma and noncutaneous cancer risk associated to PUVA, and the persistence of nonmelanoma cancer risk after the cessation of PUVA treatment. Also, the influence of photochemotherapy to the development of secondary cancers in cutaneous T cell lymphoma and the role of short term cyclosporine in later cancer development in inflammatory skin diseases were evaluated. The first three studies were performed on psoriasis patients. The risk of melanoma started to increase 15 years after the first treatment with PUVA. The risk was highest among persons who had received over 250 treatments compared to those under 250 treatments. In noncutaneous cancer, the overall risk was not increased (RR=1.08,95% CI=0.93-1.24), but significant increases in risk were found in thyroid cancer, breast cancer and in central nervous system neoplasms. These cancers were not associated to PUVA. The increased risk of SCC was associated to high cumulative UVA exposure in the PUVA regimen. The patients with high risk had no substantial exposure to other carcinogens. In BCC there was a similar but more modest tendency. In the two other studies, the risk of all secondary cancers (SIR) in CTCL patients was 1.4 (95% CI=1.0-1.9). In separate sites, the risk of lung cancer, Hodgkin and non-Hodgkin lymphomas were increased. PUVA seemed not to contribute to any extent to the appearance of these cancers. The carcinogenity of short-term cyclosporine was evaluated in inflammatory skin diseases. No increased risk for any type of cancer including the skin cancers was detected. To conclude, our studies confirm the increased skin cancer risk related to PUVA treatment in psoriasis patients. In clinical practice, this has led to a close and permanent follow-up of patients treated with PUVA. In CTCL patients, PUVA treatment did not contribute to the development of secondary cancers. We could not detect any increase in the risk of cancer in patients treated with short term cyclosporine, unlike in organ transplant patients under such long-term therapy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Since national differences exist in genes, environment, diet and life habits and also in the use of postmenopausal hormone therapy (HT), the associations between different hormone therapies and the risk for breast cancer were studied among Finnish postmenopausal women. All Finnish women over 50 years of age who used HT were identified from the national medical reimbursement register, established in 1994, and followed up for breast cancer incidence (n= 8,382 cases) until 2005 with the aid of the Finnish Cancer Registry. The risk for breast cancer in HT users was compared to that in the general female population of the same age. Among women using oral or transdermal estradiol alone (ET) (n = 110,984) during the study period 1994-2002 the standardized incidence ratio (SIR) for breast cancer in users for < 5 years was 0.93 (95% confidence interval (CI) 0.80–1.04), and in users for ≥ 5 years 1.44 (1.29–1.59). This therapy was associated with similar rises in ductal and lobular types of breast cancer. Both localized stage (1.45; 1.26–1.66) and cancers spread to regional nodes (1.35; 1.09–1.65) were associated with the use of systemic ET. Oral estriol or vaginal estrogens were not accompanied with a risk for breast cancer. The use of estrogen-progestagen therapy (EPT) in the study period 1994-2005 (n= 221,551) was accompanied with an increased incidence of breast cancer (1.31;1.20-1.42) among women using oral or transdermal EPT for 3-5 years, and the incidence increased along with the increasing duration of exposure (≥10 years, 2.07;1.84-2.30). Continuous EPT entailed a significantly higher (2.44; 2.17-2.72) breast cancer incidence compared to sequential EPT (1.78; 1.64-1.90) after 5 years of use. The use of norethisterone acetate (NETA) as a supplement to estradiol was accompanied with a higher incidence of breast cancer after 5 years of use (2.03; 1.88-2.18) than that of medroxyprogesterone acetate (MPA) (1.64; 1.49-1.79). The SIR for the lobular type of breast cancer was increased within 3 years of EPT exposure (1.35; 1.18-1.53), and the incidence of the lobular type of breast cancer (2.93; 2.33-3.64) was significantly higher than that of the ductal type (1.92; 1.67-2.18) after 10 years of exposure. To control for some confounding factors, two case control studies were performed. All Finnish women between the ages of 50-62 in 1995-2007 and diagnosed with a first invasive breast cancer (n= 9,956) were identified from the Finnish Cancer Registry, and 3 controls of similar age (n=29,868) without breast cancer were retrieved from the Finnish national population registry. Subjects were linked to the medical reimbursement register for defining the HT use. The use of ET was not associated with an increased risk for breast cancer (1.00; 0.92-1.08). Neither was progestagen-only therapy used less than 3 years. However, the use of tibolone was associated with an elevated risk for breast cancer (1.39; 1.07-1.81). The case-control study confirmed the results of EPT regarding sequential vs. continuous use of progestagen, including progestagen released continuously by an intrauterine device; the increased risk was seen already within 3 years of use (1.65;1.32-2.07). The dose of NETA was not a determinant as regards the breast cancer risk. Both systemic ET, and EPT are associated with an elevation in the risk for breast cancer. These risks resemble to a large extent those seen in several other countries. The use of an intrauterine system alone or as a complement to systemic estradiol is also associated with a breast cancer risk. These data emphasize the need for detailed information to women who are considering starting the use of HT.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Prostate cancer is the most common cancer in males. Although many patients with localized disease can be cured with surgery and radiotherapy, advanced disease and especially castration resistant metastatic disease remains incurable, with a median life expectancy of less than 18 months. Oncolytic adenoviruses (Ads) are a new promising treatment against cancer due to their innate capacity to kill cancer cells. Viral replication in tumor cells leads to oncolysis and production of a multiplicity of new virions that are capable of further destroying cancerous tissue. Oncolytic Ads can be modified for tumor targeted infection and replication and be armed with therapeutic transgenes to maximize the oncolytic effect. Worldwide, clinical trials with oncolytic Ads have demonstrated good safety while the antitumor efficacy remains to be improved. Importantly, the best responses have been reported when oncolytic adenoviruses have been combined with standard cancer treatments, such as chemotherapy and radiation. Further, a challenge in many virotherapy approaches has been the monitoring of virus replication in vivo. Reporter genes have been extensively used as transgenes to evaluate the biodistribution of the virus and activity of specific promoters. However, these techniques are often limited to preclinical evaluation and not amenable to human use. The aim of the thesis was to find and develop new oncolytic Ads with maximum efficacy against metastatic, castration resistant prostate cancer and study them in vitro and in vivo combined to different forms of radiation therapy. Using combination therapy, we were aiming for better antitumor efficacy with reduced side effects. Capsid modified Ads for enhanced transduction were studied. Serotype 3 targeted chimera, Ad5/3, was found to have enhanced infectivity for prostate cancer and was used for developing new viruses for the study. Correlation between Ad-encoded marker peptide secretion and simultaneous viral replication was evaluated and the effects of radiotherapy on viral replication were studied in detail. We found that the repair of double strand breaks caused by ionizing radiation was inhibited by adenoviral proteins and led to autophagic cell death. Both subcutaneous models and intrapulmonary tumor models mimicking metastatic, aggressive disease were used in vivo. Virus efficacy was evaluated by intratumoral injections. Also, intravenous administration was evaluated to study the effectiveness in metastatic disease. Oncolytic adenovirus treatment led to significant tumor growth control and increased the survival rate of the mice. These results were further improved when oncolytic Ads were combined with radiation therapy. Oncolytic Ads expressing human sodium/iodide transporter (hNIS) as a transgene were evaluated for their oncolytic potency and for the functionality of hNIS in vitro and in vivo. Monitoring of viral replication was also assessed using different imaging modalities relative to clinical use. SPECT imaging of tumor-bearing mice was evaluated and combined with simultaneous CT-scanning to obtain important anatomical information on biodistribution, also in a three-dimensional form. It was shown that hNIS-expressing adenoviruses could harbour a bi-functional transgene allowing for localization and imaging of viral replication. Targeted radiotherapy was applied by systemic radioiodide administration and resulted in iodide accumulation into Ad-infected tumor. The combination treatment showed significantly enhanced antitumor efficacy in mice bearing prostate cancer tumors. In summary, the results presented above aim to provide new treatment modalities for castration resistant prostate cancer. Molecular insights were provided for better understanding of the benefits of combined radiation therapy and oncolytic adenoviruses, which will hopefully facilitate the translation of the approach into clinical use for humans.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The p53-family consists of three transcription factors, p53, p73 and p63. The family members have similar but also individual functions connected to cell cycle regulation, development and tumorigenesis. p53 and p73 act mainly as tumor suppressors. During DNA damage caused by anticancer drugs or irradiation, p53 and p73 levels are upregulated in cancer cells leading to apoptosis and cell cycle arrest. p53 is mutated in almost 50 per cent of the cancers, causing the cancer cells unable to undergo cell death. Instead, p73 is rarely mutated in cancer cells and because of that could be more viable target for anticancer therapy. The network surrounding the regulation of p73 is extensive and has several potential targets for cancer therapy. One of the most studied is Itch ligase, the negative regulator of p73 levels. Gene therapy directed towards knockdown of Itch ligase is a potential approach but in need for more in vivo proof. p73 has two isoforms, transactivating TA-forms and dominant-negative ΔN-forms. The specific regulation of these isoforms could also offer a possible way for more effective cancer treatment. The literature work includes information of structures, isoforms, functions and possible therapeutic targets of p73. Also the main therapeutic approaches to date are introduced. The experimental part is based on transfection and cytotoxicity studies done e.g. in pancreatic cancer cells (Mia PaCa-2, PANC1, BxPc-3 and HPAC). The aim of the experimental work was to optimize the conditions for effective transfection with DAB16 dendrimer nanoparticles and to measure the cytotoxicity of plain dendrimers and DAB16-pDNA complexes. Also the protein levels of p73 and Itch ligase were measured by Western blotting. The work was done as a part of a bigger project, which was aiming to down regulate Itch ligase (negative regulator of p73) by siRNA/shRNA. Tranfection results were promising, showing good transfection efficacy with DAB16 N/P30 in pancreatic cancer cells (except in BxPc-3). Pancreatic cancer cells showed recovery in 3 days after they were exposed to plain dendrimer solution or to DAB16-pDNA. Measurement of protein levels by Western blotting was not optimal and the proposals for the improvement regarding e.g. the gels and the extracted protein amounts have been done.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Colorectal cancer (CRC) is a major health concern and demands long-term efforts in developing strategies for screening and prevention. CRC has become a preventable disease as a consequence of a better understanding of colorectal carcinogenesis. However, current therapy is unsatisfactory and necessitates the exploration of other approaches for the prevention and treatment of cancer. Plant based products have been recognized as preventive with regard to the development of colon cancer. Therefore, the potential chemopreventive use and mechanism of action of Lebanese natural product were evaluated. Towards this aim the antitumor activity of Onopordum cynarocephalum and Centaurea ainetensis has been studied using in vitro and in vivo models. In vitro, both crude extracts were non cytotoxic to normal intestinal cells and inhibited the proliferation of colon cancer cells in a dose-dependent manner. In vivo, both crude extracts reduced the number of tumors by an average of 65% at weeks 20 (adenomas stage) and 30 (adenocarcinomas stage). The activity of the C. ainetensis extract was attributed to Salograviolide A, a guaianolide-type sesquiterpene lactone, which was isolated and identified through bio-guided fractionation. The mechanism of action of thymoquinone (TQ), the active component of Nigella sativa, was established in colon cancer cells using in vitro models. By the use of N-acetyl cysteine, a radical scavenger, the direct involvement of reactive oxygen species in TQ-induced apoptotic cells was established. The analytical detection of TQ from spiked serum and its protein binding were evaluated. The average recovery of TQ from spiked serum subjected to several extraction procedures was 2.5% proving the inability of conventional methods to analyze TQ from serum. This has been explained by the extensive binding (>98%) of TQ to serum and major serum components such as bovine serum albumin (BSA) and alpha-1-acid glycoprotein (AGP). Using mass spectrometry analysis, TQ was confirmed to bind covalently to the free cysteine in position 34 and 147 of the amino acid sequence of BSA and AGP, respectively. The results of this work put at the disposal for future development new plants with anti-cancer activities and enhance the understanding of the pharmaceutical properties of TQ, a prerequisite for its future clinical development.