38 resultados para Solid lipid nanoparticles

em Helda - Digital Repository of University of Helsinki


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanotechnology applications are entering the market in increasing numbers, nanoparticles being among the main classes of materials used. Particles can be used, e.g., for catalysing chemical reactions, such as is done in car exhaust catalysts today. They can also modify the optical and electronic properties of materials or be used as building blocks for thin film coatings on a variety of surfaces. To develop materials for specific applications, an intricate control of the particle properties, structure, size and shape is required. All these depend on a multitude of factors from methods of synthesis and deposition to post-processing. This thesis addresses the control of nanoparticle structure by low-energy cluster beam deposition and post-synthesis ion irradiation. Cluster deposition in high vacuum offers a method for obtaining precisely controlled cluster-assembled materials with minimal contamination. Due to the clusters small size, however, the cluster-surface interaction may drastically change the cluster properties on deposition. In this thesis, the deposition process of metal and alloy clusters on metallic surfaces is modelled using molecular dynamics simulations, and the mechanisms influencing cluster structure are identified. Two mechanisms, mechanical melting upon deposition and thermally activated dislocation motion, are shown to determine whether a deposited cluster will align epitaxially with its support. The semiconductor industry has used ion irradiation as a tool to modify material properties for decades. Irradiation can be used for doping, patterning surfaces, and inducing chemical ordering in alloys, just to give a few examples. The irradiation response of nanoparticles has, however, remained an almost uncharted territory. Although irradiation effects in nanoparticles embedded inside solid matrices have been studied, almost no work has been done on supported particles. In this thesis, the response of supported nanoparticles is studied systematically for heavy and light ion irradiation. The processes leading to damage production are identified and models are developed for both types of irradiation. In recent experiments, helium irradiation has been shown to induce a phase transformation from multiply twinned to single-crystalline nanoparticles in bimetallic alloys, but the nature of the transition has remained unknown. The alloys for which the effect has been observed are CuAu and FePt. It is shown in this thesis that transient amorphization leads to the observed transition and that while CuAu and FePt do not amorphize upon irradiation in bulk or as thin films, they readily do so as nanoparticles. This is the first time such an effect is demonstrated with supported particles, not embedded in a matrix where mixing is always an issue. An understanding of the above physical processes is essential, if nanoparticles are to be used in applications in an optimal way. This thesis clarifies the mechanisms which control particle morphology, and paves way for the synthesis of nanostructured materials tailored for specific applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid materials can exist in different physical structures without a change in chemical composition. This phenomenon, known as polymorphism, has several implications on pharmaceutical development and manufacturing. Various solid forms of a drug can possess different physical and chemical properties, which may affect processing characteristics and stability, as well as the performance of a drug in the human body. Therefore, knowledge and control of the solid forms is fundamental to maintain safety and high quality of pharmaceuticals. During manufacture, harsh conditions can give rise to unexpected solid phase transformations and therefore change the behavior of the drug. Traditionally, pharmaceutical production has relied on time-consuming off-line analysis of production batches and finished products. This has led to poor understanding of processes and drug products. Therefore, new powerful methods that enable real time monitoring of pharmaceuticals during manufacturing processes are greatly needed. The aim of this thesis was to apply spectroscopic techniques to solid phase analysis within different stages of drug development and manufacturing, and thus, provide a molecular level insight into the behavior of active pharmaceutical ingredients (APIs) during processing. Applications to polymorph screening and different unit operations were developed and studied. A new approach to dissolution testing, which involves simultaneous measurement of drug concentration in the dissolution medium and in-situ solid phase analysis of the dissolving sample, was introduced and studied. Solid phase analysis was successfully performed during different stages, enabling a molecular level insight into the occurring phenomena. Near-infrared (NIR) spectroscopy was utilized in screening of polymorphs and processing-induced transformations (PITs). Polymorph screening was also studied with NIR and Raman spectroscopy in tandem. Quantitative solid phase analysis during fluidized bed drying was performed with in-line NIR and Raman spectroscopy and partial least squares (PLS) regression, and different dehydration mechanisms were studied using in-situ spectroscopy and partial least squares discriminant analysis (PLS-DA). In-situ solid phase analysis with Raman spectroscopy during dissolution testing enabled analysis of dissolution as a whole, and provided a scientific explanation for changes in the dissolution rate. It was concluded that the methods applied and studied provide better process understanding and knowledge of the drug products, and therefore, a way to achieve better quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many active pharmaceutical ingredients (APIs) have both anhydrate and hydrate forms. Due to the different physicochemical properties of solid forms, the changes in solid-state may result in therapeutic, pharmaceutical, legal and commercial problems. In order to obtain good solid dosage form quality and performance, there is a constant need to understand and control these phase transitions during manufacturing and storage. Thus it is important to detect and also quantify the possible transitions between the different forms. In recent years, vibrational spectroscopy has become an increasingly popular tool to characterise the solid-state forms and their phase transitions. It offers several advantages over other characterisation techniques including an ability to obtain molecular level information, minimal sample preparation, and the possibility of monitoring changes non-destructively in-line. Dehydration is the phase transition of hydrates which is frequently encountered during the dosage form production and storage. The aim of the present thesis was to investigate the dehydration behaviour of diverse pharmaceutical hydrates by near infrared (NIR), Raman and terahertz pulsed spectroscopic (TPS) monitoring together with multivariate data analysis. The goal was to reveal new perspectives for investigation of the dehydration at the molecular level. Solid-state transformations were monitored during dehydration of diverse hydrates on hot-stage. The results obtained from qualitative experiments were used to develop a method and perform the quantification of the solid-state forms during process induced dehydration in a fluidised bed dryer. Both in situ and in-line process monitoring and quantification was performed. This thesis demonstrated the utility of vibrational spectroscopy techniques and multivariate modelling to monitor and investigate dehydration behaviour in situ and during fluidised bed drying. All three spectroscopic methods proved complementary in the study of dehydration. NIR spectroscopy models could quantify the solid-state forms in the binary system, but were unable to quantify all the forms in the quaternary system. Raman spectroscopy models on the other hand could quantify all four solid-state forms that appeared upon isothermal dehydration. The speed of spectroscopic methods makes them applicable for monitoring dehydration and the quantification of multiple forms was performed during phase transition. Thus the solid-state structure information at the molecular level was directly obtained. TPS detected the intermolecular phonon modes and Raman spectroscopy detected mostly the changes in intramolecular vibrations. Both techniques revealed information about the crystal structure changes. NIR spectroscopy, on the other hand was more sensitive to water content and hydrogen bonding environment of water molecules. This study provides a basis for real time process monitoring using vibrational spectroscopy during pharmaceutical manufacturing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern drug discovery gives rise to a great number of potential new therapeutic agents, but in some cases the efficient treatment of patient may not be achieved because the delivery of active compounds to the target site is insufficient. Thus, drug delivery is one of the major challenges in current pharmaceutical research. Numerous nanoparticle-based drug carriers, e.g. liposomes, have been developed for enhanced drug delivery and targeting. Drug targeting may enhance the efficiency of the treatment and, importantly, reduce unwanted side effects by decreasing drug distribution to non-target tissues. Liposomes are biocompatible lipid-based carriers that have been studied for drug delivery during the last 40 years. They can be functionalized with targeting ligands and sensing materials for triggered activation. In this study, various external signal-assisted liposomal delivery systems were developed. Signals can be used to modulate drug permeation or release from the liposome formulation, and they provide accurate control of time, place and rate of activation. The study involved three types of signals that were used to trigger drug permeation and release: electricity, heat and light. Electrical stimulus was utilized to enhance the permeation of liposomal DNA across the skin. Liposome/DNA complex-mediated transfections were performed in tight rat epidermal cell model. Various transfection media and current intensities were tested, and transfection efficiency was evaluated non-invasively by monitoring the concentration of secreted reporter protein in cell culture medium. Liposome/DNA complexes produced gene expression, but electrical stimulus did not enhance the transfection efficiency significantly. Heat-sensitive liposomal drug delivery system was developed by coating liposomes with biodegradable and thermosensitive poly(N-(2-hydroxypropyl) methacrylamide-mono/dilactate polymer. Temperature-triggered liposome aggregation and contents release from liposomes were evaluated. The cloud point temperature (CP) of the polymer was set to 42 °C. Polymer-coated liposome aggregation and contents release were observed above CP of the polymer, while non-coated liposomes remained intact. Polymer precipitates above its CP and interacts with liposomal bilayers. It is likely that this induces permeabilization of the liposomal membrane and contents release. Light-sensitivity was introduced to liposomes by incorporation of small (< 5 nm) gold nanoparticles. Hydrophobic and hydrophilic gold nanoparticles were embedded in thermosensitive liposomes, and contents release was investigated upon UV light exposure. UV light-induced lipid phase transitions were examined with small angle X-ray scattering, and light-triggered contents release was shown also in human retinal pigment epithelial cell line. Gold nanoparticles absorb light energy and transfer it into heat, which induces phase transitions in liposomes and triggers the contents release. In conclusion, external signal-activated liposomes offer an advanced platform for numerous applications in drug delivery, particularly in the localized drug delivery. Drug release may be localized to the target site with triggering stimulus that results in better therapeutic response and less adverse effects. Triggering signal and mechanism of activation can be selected according to a specific application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to improve and continuously develop the quality of pharmaceutical products, the process analytical technology (PAT) framework has been adopted by the US Food and Drug Administration. One of the aims of PAT is to identify critical process parameters and their effect on the quality of the final product. Real time analysis of the process data enables better control of the processes to obtain a high quality product. The main purpose of this work was to monitor crucial pharmaceutical unit operations (from blending to coating) and to examine the effect of processing on solid-state transformations and physical properties. The tools used were near-infrared (NIR) and Raman spectroscopy combined with multivariate data analysis, as well as X-ray powder diffraction (XRPD) and terahertz pulsed imaging (TPI). To detect process-induced transformations in active pharmaceutical ingredients (APIs), samples were taken after blending, granulation, extrusion, spheronisation, and drying. These samples were monitored by XRPD, Raman, and NIR spectroscopy showing hydrate formation in the case of theophylline and nitrofurantoin. For erythromycin dihydrate formation of the isomorphic dehydrate was critical. Thus, the main focus was on the drying process. NIR spectroscopy was applied in-line during a fluid-bed drying process. Multivariate data analysis (principal component analysis) enabled detection of the dehydrate formation at temperatures above 45°C. Furthermore, a small-scale rotating plate device was tested to provide an insight into film coating. The process was monitored using NIR spectroscopy. A calibration model, using partial least squares regression, was set up and applied to data obtained by in-line NIR measurements of a coating drum process. The predicted coating thickness agreed with the measured coating thickness. For investigating the quality of film coatings TPI was used to create a 3-D image of a coated tablet. With this technique it was possible to determine coating layer thickness, distribution, reproducibility, and uniformity. In addition, it was possible to localise defects of either the coating or the tablet. It can be concluded from this work that the applied techniques increased the understanding of physico-chemical properties of drugs and drug products during and after processing. They additionally provided useful information to improve and verify the quality of pharmaceutical dosage forms

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The antioxidant activity of natural plant materials rich in phenolic compounds is being widely investigated for protection of food products sensitive to oxidative reactions. In this thesis plant materials rich in phenolic compounds were studied as possible antioxidants to prevent protein and lipid oxidation reactions in different food matrixes such as pork meat patties and corn oil-in water emulsions. Loss of anthocyanins was also measured during oxidation in corn oil-in-water emulsions. In addition, the impact of plant phenolics on amino acid level was studied using tryptophan as a model compound to elucidate their role in preventing the formation of tryptophan oxidation products. A high-performance liquid chromatography (HPLC) method with ultraviolet and fluorescence detection (UV-FL) was developed that enabled fast investigation of formation of tryptophan derived oxidation products. Byproducts of oilseed processes such as rapeseed (Brassica rapa L.), camelina (Camelina sativa) and soy meal (Glycine max L.) as well as Scots pine bark (Pinus sylvestris) and several reference compounds were shown to act as antioxidants toward both protein and lipid oxidation in cooked pork meat patties. In meat, the antioxidant activity of camelina, rapeseed and soy meal were more pronounced when used in combination with a commercial rosemary extract (Rosmarinus officinalis). Berry phenolics such as black currant (Ribes nigrum) anthocyanins and raspberry (Rubus idaeus) ellagitannins showed potent antioxidant activity in corn oil-in-water emulsions toward lipid oxidation with and without β-lactoglobulin. The antioxidant effect was more pronounced in the presence of β-lactoglobulin. The berry phenolics also inhibited the oxidation of tryptophan and cysteine side chains of β-lactoglobulin. The results show that the amino acid side chains were oxidized prior the propagation of lipid oxidation, thereby inhibiting fatty acid scission. In addition, the concentration and color of black currant anthocyanins decreased during the oxidation. Oxidation of tryptophan was investigated in two different oxidation models with hydrogen peroxide (H2O2) and hexanal/FeCl2. Oxidation of tryptophan in both models resulted in oxidation products such as 3a-hydroxypyrroloindole-2-carboxylic acid, dioxindolylalanine, 5-hydroxy-tryptophan, kynurenine, N-formylkynurenine and β-oxindolylalanine. However, formation of tryptamine was only observed in tryptophan oxidized in the presence of H2O2. Pine bark phenolics, black currant anthocyanins, camelina meal phenolics as well as cranberry proanthocyanidins (Vaccinium oxycoccus) provided the best antioxidant effect toward tryptophan and its oxidation products when oxidized with H2O2. The tryptophan modifications formed upon hexanal/FeCl2 treatment were efficiently inhibited by camelina meal followed by rapeseed and soy meal. In contrast, phenolics from raspberry, black currant, and rowanberry (Sorbus aucuparia) acted as weak prooxidants. This thesis contributes to elucidating the effects of natural phenolic compounds as potential antioxidants in order to control and prevent protein and lipid oxidation reactions. Understanding the relationship between phenolic compounds and proteins as well as lipids could lead to the development of new, effective, and multifunctional antioxidant strategies that could be used in food, cosmetic and pharmaceutical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is intense activity in the area of theoretical chemistry of gold. It is now possible to predict new molecular species, and more recently, solids by combining relativistic methodology with isoelectronic thinking. In this thesis we predict a series of solid sheet-type crystals for Group-11 cyanides, MCN (M=Cu, Ag, Au), and Group-2 and 12 carbides MC2 (M=Be-Ba, Zn-Hg). The idea of sheets is then extended to nanostrips which can be bent to nanorings. The bending energies and deformation frequencies can be systematized by treating these molecules as an elastic bodies. In these species Au atoms act as an 'intermolecular glue'. Further suggested molecular species are the new uncongested aurocarbons, and the neutral Au_nHg_m clusters. Many of the suggested species are expected to be stabilized by aurophilic interactions. We also estimate the MP2 basis-set limit of the aurophilicity for the model compounds [ClAuPH_3]_2 and [P(AuPH_3)_4]^+. Beside investigating the size of the basis-set applied, our research confirms that the 19-VE TZVP+2f level, used a decade ago, already produced 74 % of the present aurophilic attraction energy for the [ClAuPH_3]_2 dimer. Likewise we verify the preferred C4v structure for the [P(AuPH_3)_4]^+ cation at the MP2 level. We also perform the first calculation on model aurophilic systems using the SCS-MP2 method and compare the results to high-accuracy CCSD(T) ones. The recently obtained high-resolution microwave spectra on MCN molecules (M=Cu, Ag, Au) provide an excellent testing ground for quantum chemistry. MP2 or CCSD(T) calculations, correlating all 19 valence electrons of Au and including BSSE and SO corrections, are able to give bond lengths to 0.6 pm, or better. Our calculated vibrational frequencies are expected to be better than the currently available experimental estimates. Qualitative evidence for multiple Au-C bonding in triatomic AuCN is also found.