10 resultados para Sodium Titanate, Nanotubes, Nanorods, Lithium Intercalation, Pseudocapacitive

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present thesis was to study the role of the epithelial sodium channel (ENaC) in clearance of fetal lung fluid in the newborn infant by measurement of airway epithelial expression of ENaC, of nasal transepithelial potential difference (N-PD), and of lung compliance (LC). In addition, the effect of postnatal dexamethasone on airway epithelial ENaC expression was measured in preterm infants with bronchopulmonary dysplasia (BPD). The patient population was formed of selected term newborn infants born in the Department of Obstetrics (Studies II-IV) and selected preterm newborn infants treated in the neonatal intensive care unit of the Hospital for Children and Adolescents (Studies I and IV) of the Helsinki University Central Hospital in Finland. A small population of preterm infants suffering from BPD was included in Study I. Studies I, III, and IV included airway epithelial measurement of ENaC and in Studies II and III, measurement of N-PD and LC. In Study I, ENaC expression analyses were performed in the Research Institute of the Hospital for Sick Children in Toronto, Ontario, Canada. In the following studies, analyses were performed in the Scientific Laboratory of the Hospital for Children and Adolescents. N-PD and LC measurements were performed at bedside in these hospitals. In term newborn infants, the percentage of amiloride-sensitive N-PD, a surrogate for ENaC activity, measured during the first 4 postnatal hours correlates positively with LC measured 1 to 2 days postnatally. Preterm infants with BPD had, after a therapeutic dose of dexamethasone, higher airway epithelial ENaC expression than before treatment. These patients were subsequently weaned from mechanical ventilation, probably as a result of the clearance of extra fluid from the alveolar spaces. In addition, we found that in preterm infants ENaC expression increases with gestational age (GA). In preterm infants, ENaC expression in the airway epithelium was lower than in term newborn infants. During the early postnatal period in those born both preterm and term airway epithelial βENaC expression decreased significantly. Term newborn infants delivered vaginally had a significantly smaller airway epithelial expression of αENaC after the first postnatal day than did those delivered by cesarean section. The functional studies showed no difference in N-PD between infants delivered vaginally and by cesarean section. We therefore conclude that the low airway epithelial expression of ENaC in the preterm infant and the correlation of N-PD with LC in the term infant indicate a role for ENaC in the pathogenesis of perinatal pulmonary adaptation and neonatal respiratory distress. Because dexamethasone raised ENaC expression in preterm infants with BPD, and infants were subsequently weaned from ventilator therapy, we suggest that studies on the treatment of respiratory distress in the preterm infant should include the induction of ENaC activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ever-increasing demand for faster computers in various areas, ranging from entertaining electronics to computational science, is pushing the semiconductor industry towards its limits on decreasing the sizes of electronic devices based on conventional materials. According to the famous law by Gordon E. Moore, a co-founder of the world s largest semiconductor company Intel, the transistor sizes should decrease to the atomic level during the next few decades to maintain the present rate of increase in the computational power. As leakage currents become a problem for traditional silicon-based devices already at sizes in the nanometer scale, an approach other than further miniaturization is needed to accomplish the needs of the future electronics. A relatively recently proposed possibility for further progress in electronics is to replace silicon with carbon, another element from the same group in the periodic table. Carbon is an especially interesting material for nanometer-sized devices because it forms naturally different nanostructures. Furthermore, some of these structures have unique properties. The most widely suggested allotrope of carbon to be used for electronics is a tubular molecule having an atomic structure resembling that of graphite. These carbon nanotubes are popular both among scientists and in industry because of a wide list of exciting properties. For example, carbon nanotubes are electronically unique and have uncommonly high strength versus mass ratio, which have resulted in a multitude of proposed applications in several fields. In fact, due to some remaining difficulties regarding large-scale production of nanotube-based electronic devices, fields other than electronics have been faster to develop profitable nanotube applications. In this thesis, the possibility of using low-energy ion irradiation to ease the route towards nanotube applications is studied through atomistic simulations on different levels of theory. Specifically, molecular dynamic simulations with analytical interaction models are used to follow the irradiation process of nanotubes to introduce different impurity atoms into these structures, in order to gain control on their electronic character. Ion irradiation is shown to be a very efficient method to replace carbon atoms with boron or nitrogen impurities in single-walled nanotubes. Furthermore, potassium irradiation of multi-walled and fullerene-filled nanotubes is demonstrated to result in small potassium clusters in the hollow parts of these structures. Molecular dynamic simulations are further used to give an example on using irradiation to improve contacts between a nanotube and a silicon substrate. Methods based on the density-functional theory are used to gain insight on the defect structures inevitably created during the irradiation. Finally, a new simulation code utilizing the kinetic Monte Carlo method is introduced to follow the time evolution of irradiation-induced defects on carbon nanotubes on macroscopic time scales. Overall, the molecular dynamic simulations presented in this thesis show that ion irradiation is a promisingmethod for tailoring the nanotube properties in a controlled manner. The calculations made with density-functional-theory based methods indicate that it is energetically favorable for even relatively large defects to transform to keep the atomic configuration as close to the pristine nanotube as possible. The kinetic Monte Carlo studies reveal that elevated temperatures during the processing enhance the self-healing of nanotubes significantly, ensuring low defect concentrations after the treatment with energetic ions. Thereby, nanotubes can retain their desired properties also after the irradiation. Throughout the thesis, atomistic simulations combining different levels of theory are demonstrated to be an important tool for determining the optimal conditions for irradiation experiments, because the atomic-scale processes at short time scales are extremely difficult to study by any other means.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanotubes, seamless cylinders made from carbon atoms, have outstanding characteristics: inherent nano-size, record-high Young’s modulus, high thermal stability and chemical inertness. They also have extraordinary electronic properties: in addition to extremely high conductance, they can be both metals and semiconductors without any external doping, just due to minute changes in the arrangements of atoms. As traditional silicon-based devices are reaching the level of miniaturisation where leakage currents become a problem, these properties make nanotubes a promising material for applications in nanoelectronics. However, several obstacles must be overcome for the development of nanotube-based nanoelectronics. One of them is the ability to modify locally the electronic structure of carbon nanotubes and create reliable interconnects between nanotubes and metal contacts which likely can be used for integration of the nanotubes in macroscopic electronic devices. In this thesis, the possibility of using ion and electron irradiation as a tool to introduce defects in nanotubes in a controllable manner and to achieve these goals is explored. Defects are known to modify the electronic properties of carbon nanotubes. Some defects are always present in pristine nanotubes, and naturally are introduced during irradiation. Obviously, their density can be controlled by irradiation dose. Since different types of defects have very different effects on the conductivity, knowledge of their abundance as induced by ion irradiation is central for controlling the conductivity. In this thesis, the response of single walled carbon nanotubes to ion irradiation is studied. It is shown that, indeed, by energy selective irradiation the conductance can be controlled. Not only the conductivity, but the local electronic structure of single walled carbon nanotubes can be changed by the defects. The presented studies show a variety of changes in the electronic structures of semiconducting single walled nanotubes, varying from individual new states in the band gap to changes in the band gap width. The extensive simulation results for various types of defect make it possible to unequivocally identify defects in single walled carbon nanotubes by combining electronic structure calculations and scanning tunneling spectroscopy, offering a reference data for a wide scientific community of researchers studying nanotubes with surface probe microscopy methods. In electronics applications, carbon nanotubes have to be interconnected to the macroscopic world via metal contacts. Interactions between the nanotubes and metal particles are also essential for nanotube synthesis, as single walled nanotubes are always grown from metal catalyst particles. In this thesis, both growth and creation of nanotube-metal nanoparticle interconnects driven by electron irradiation is studied. Surface curvature and the size of metal nanoparticles is demonstrated to determine the local carbon solubility in these particles. As for nanotube-metal contacts, previous experiments have proved the possibility to create junctions between carbon nanotubes and metal nanoparticles under irradiation in a transmission electron microscope. In this thesis, the microscopic mechanism of junction formation is studied by atomistic simulations carried out at various levels of sophistication. It is shown that structural defects created by the electron beam and efficient reconstruction of the nanotube atomic network, inherently related to the nanometer size and quasi-one dimensional structure of nanotubes, are the driving force for junction formation. Thus, the results of this thesis not only address practical aspects of irradiation-mediated engineering of nanosystems, but also contribute to our understanding of the behaviour of point defects in low-dimensional nanoscale materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanomaterials with a hexagonally ordered atomic structure, e.g., graphene, carbon and boron nitride nanotubes, and white graphene (a monolayer of hexagonal boron nitride) possess many impressive properties. For example, the mechanical stiffness and strength of these materials are unprecedented. Also, the extraordinary electronic properties of graphene and carbon nanotubes suggest that these materials may serve as building blocks of next generation electronics. However, the properties of pristine materials are not always what is needed in applications, but careful manipulation of their atomic structure, e.g., via particle irradiation can be used to tailor the properties. On the other hand, inadvertently introduced defects can deteriorate the useful properties of these materials in radiation hostile environments, such as outer space. In this thesis, defect production via energetic particle bombardment in the aforementioned materials is investigated. The effects of ion irradiation on multi-walled carbon and boron nitride nanotubes are studied experimentally by first conducting controlled irradiation treatments of the samples using an ion accelerator and subsequently characterizing the induced changes by transmission electron microscopy and Raman spectroscopy. The usefulness of the characterization methods is critically evaluated and a damage grading scale is proposed, based on transmission electron microscopy images. Theoretical predictions are made on defect production in graphene and white graphene under particle bombardment. A stochastic model based on first-principles molecular dynamics simulations is used together with electron irradiation experiments for understanding the formation of peculiar triangular defect structures in white graphene. An extensive set of classical molecular dynamics simulations is conducted, in order to study defect production under ion irradiation in graphene and white graphene. In the experimental studies the response of carbon and boron nitride multi-walled nanotubes to irradiation with a wide range of ion types, energies and fluences is explored. The stabilities of these structures under ion irradiation are investigated, as well as the issue of how the mechanism of energy transfer affects the irradiation-induced damage. An irradiation fluence of 5.5x10^15 ions/cm^2 with 40 keV Ar+ ions is established to be sufficient to amorphize a multi-walled nanotube. In the case of 350 keV He+ ion irradiation, where most of the energy transfer happens through inelastic collisions between the ion and the target electrons, an irradiation fluence of 1.4x10^17 ions/cm^2 heavily damages carbon nanotubes, whereas a larger irradiation fluence of 1.2x10^18 ions/cm^2 leaves a boron nitride nanotube in much better condition, indicating that carbon nanotubes might be more susceptible to damage via electronic excitations than their boron nitride counterparts. An elevated temperature was discovered to considerably reduce the accumulated damage created by energetic ions in both carbon and boron nitride nanotubes, attributed to enhanced defect mobility and efficient recombination at high temperatures. Additionally, cobalt nanorods encapsulated inside multi-walled carbon nanotubes were observed to transform into spherical nanoparticles after ion irradiation at an elevated temperature, which can be explained by the inverse Ostwald ripening effect. The simulation studies on ion irradiation of the hexagonal monolayers yielded quantitative estimates on types and abundances of defects produced within a large range of irradiation parameters. He, Ne, Ar, Kr, Xe, and Ga ions were considered in the simulations with kinetic energies ranging from 35 eV to 10 MeV, and the role of the angle of incidence of the ions was studied in detail. A stochastic model was developed for utilizing the large amount of data produced by the molecular dynamics simulations. It was discovered that a high degree of selectivity over the types and abundances of defects can be achieved by carefully selecting the irradiation parameters, which can be of great use when precise pattering of graphene or white graphene using focused ion beams is planned.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tutkimuksen tavoitteena oli ottaa käyttöön tandemmassaspektrometrinen (MS/MS) menetelmä, jolla voidaan analysoida polysakkarideista purkautuneiden oligosakkaridien rakenteita. Tavoitteena oli, että menetelmällä voidaan määrittää glykosidisten sidosten eri asemat monosakkaridirakenteiltaan samanlaisista neutraaleista lineaarisista oligosakkarideista. Kirjallisuustutkimuksessa tarkasteltiin oligosakkaridien rakenteiden määrittämiseen käytettyjä MS/MS-menetelmiä ja oligosakkaridien pilkkoutumisreaktioita MS/MS-analyysissa. Kirjallisuuden perusteella MS/MS-analyysissa oligosakkaridien pilkkoutuminen voi tapahtua joko glykosidisen sidoksen katkeamisella tai monosakkaridirenkaan halkeamisella. Monosakkaridirenkaan pilkkoutumisesta muodostuvia tuoteioneja voidaan käyttää glykosidisen sidoksen aseman määrittämiseen. Kokeellisessa tutkimuksessa selvitettiin aluksi monosakkaridirakenteiltaan isomeerisilla disakkaridimalliaineilla glykosidisen sidoksen sijainnin vaikutus disakkaridin pilkkoutumiseen MS/MS-analyysissa. Tämän jälkeen pyrittiin löytämään tunnetuista tri- ja tetrasakkaridimalliaineista näitä eri sidoksille tyypillisiä tuoteionien jakaumia. Tunnettujen tri- ja tetrasakkaridien pilkkoutuminen yhdenmukaisesti disakkaridien pilkkoutumisen kanssa antaisi mahdollisuuden pitkäketjuisempien oligosakkaridien glykosidisten sidosten tunnistamiseen sovelletulla MS/MS-menetelmällä. MS/MS-analyysit tehtiin ioniloukkumassadetektorilaitteistolla käyttäen sähkösumutusionisaatiota (ESI). Oligosakkaridit määritettiin positiivisella ionisaatiolla litium- ja natriumaddukti-ioneina ja negatiivisella ionisaatiolla kloridiaddukti-ioneina. Vertaamalla tri- ja tetrasakkarideista MS/MS-analyyseissa muodostuneita tuoteioneja disakkarideista muodostuneisiin tuoteioneihin, voitiin sekä positiivisella että negatiivisella ionisaatiolla määrittää oligosakkaridin pelkistävän pään sidoksen asema. Negatiivisella ionisaatiolla tri- ja tetrasakkarideista muodostuneista tuoteioneista voitiin määrittää myös muiden kuin pelkistävän pään sidosten asemia. Positiivisella ionisaatiolla muiden sidosten määrittäminen ei ollut mahdollista, koska rengasfragmentti-ioneja muodostui pääosin oligosakkaridin pelkistävästä päästä. Glykosidisen sidoksen katkeamisesta muodostuneet tuoteionit analysoitiin edelleen MS3-analyysilla. MS3-analyysissa muodostuneista tuoteioneista ei voitu tulkita sidosten asemia, koska lähtöionit koostuivat sekä terminaalisen että pelkistävän pään isomeerisista ioneista.