11 resultados para PEDIATRIC SUBJECTS

em Helda - Digital Repository of University of Helsinki


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The incidence of all forms of congenital heart defects is 0.75%. For patients with congenital heart defects, life-expectancy has improved with new treatment modalities. Structural heart defects may require surgical or catheter treatment which may be corrective or palliative. Even those with corrective therapy need regular follow-up due to residual lesions, late sequelae, and possible complications after interventions. Aims: The aim of this thesis was to evaluate cardiac function before and after treatment for volume overload of the right ventricle (RV) caused by atrial septal defect (ASD), volume overload of the left ventricle (LV) caused by patent ductus arteriosus (PDA), and pressure overload of the LV caused by coarctation of the aorta (CoA), and to evaluate cardiac function in patients with Mulibrey nanism. Methods: In Study I, of the 24 children with ASD, 7 underwent surgical correction and 17 percutaneous occlusion of ASD. Study II had 33 patients with PDA undergoing percutaneous occlusion. In Study III, 28 patients with CoA underwent either surgical correction or percutaneous balloon dilatation of CoA. Study IV comprised 26 children with Mulibrey nanism. A total of 76 healthy voluntary children were examined as a control group. In each study, controls were matched to patients. All patients and controls underwent clinical cardiovascular examinations, two-dimensional (2D) and three-dimensional (3D) echocardiographic examinations, and blood sampling for measurement of natriuretic peptides prior to the intervention and twice or three times thereafter. Control children were examined once by 2D and 3D echocardiography. M-mode echocardiography was performed from the parasternal long axis view directed by 2D echocardiography. The left atrium-to-aorta (LA/Ao) ratio was calculated as an index of LA size. The end-diastolic and end-systolic dimensions of LV as well as the end-diastolic thicknesses of the interventricular septum and LV posterior wall were measured. LV volumes, and the fractional shortening (FS) and ejection fraction (EF) as indices of contractility were then calculated, and the z scores of LV dimensions determined. Diastolic function of LV was estimated from the mitral inflow signal obtained by Doppler echocardiography. In three-dimensional echocardiography, time-volume curves were used to determine end-diastolic and end-systolic volumes, stroke volume, and EF. Diastolic and systolic function of LV was estimated from the calculated first derivatives of these curves. Results: (I): In all children with ASD, during the one-year follow-up, the z score of the RV end-diastolic diameter decreased and that of LV increased. However, dilatation of RV did not resolve entirely during the follow-up in either treatment group. In addition, the size of LV increased more slowly in the surgical subgroup but reached control levels in both groups. Concentrations of natriuretic peptides in patients treated percutaneously increased during the first month after ASD closure and normalized thereafter, but in patients treated surgically, they remained higher than in controls. (II): In the PDA group, at baseline, the end-diastolic diameter of LV measured over 2SD in 5 of 33 patients. The median N-terminal pro-brain natriuretic peptide (proBNP) concentration before closure measured 72 ng/l in the control group and 141 ng/l in the PDA group (P = 0.001) and 6 months after closure measured 78.5 ng/l (P = NS). Patients differed from control subjects in indices of LV diastolic and systolic function at baseline, but by the end of follow-up, all these differences had disappeared. Even in the subgroup of patients with normal-sized LV at baseline, the LV end-diastolic volume decreased significantly during follow-up. (III): Before repair, the size and wall thickness of LV were higher in patients with CoA than in controls. Systolic blood pressure measured a median 123 mm Hg in patients before repair (P < 0.001) and 103 mm Hg one year thereafter, and 101 mm Hg in controls. The diameter of the coarctation segment measured a median 3.0 mm at baseline, and 7.9 at the 12-month (P = 0.006) follow-up. Thicknesses of the interventricular septum and posterior wall of the LV decreased after repair but increased to the initial level one year thereafter. The velocity time integrals of mitral inflow increased, but no changes were evident in LV dimensions or contractility. During follow-up, serum levels of natriuretic peptides decreased correlating with diastolic and systolic indices of LV function in 2D and 3D echocardiography. (IV): In 2D echocardiography, the interventricular septum and LV posterior wall were thicker, and velocity time integrals of mitral inflow shorter in patients with Mulibrey nanism than in controls. In 3D echocardiography, LV end-diastolic volume measured a median 51.9 (range 33.3 to 73.4) ml/m² in patients and 59.7 (range 37.6 to 87.6) ml/m² in controls (P = 0.040), and serum levels of ANPN and proBNP a median 0.54 (range 0.04 to 4.7) nmol/l and 289 (range 18 to 9170) ng/l, in patients and 0.28 (range 0.09 to 0.72) nmol/l (P < 0.001) and 54 (range 26 to 139) ng/l (P < 0.001) in controls. They correlated with several indices of diastolic LV function. Conclusions (I): During the one-year follow-up after the ASD closure, RV size decreased but did not normalize in all patients. The size of the LV normalized after ASD closure but the increase in LV size was slower in patients treated surgically than in those treated with the percutaneous technique. Serum levels of ANPN and proBNP were elevated prior to ASD closure but decreased thereafter to control levels in patients treated with the percutaneous technique but not in those treated surgically. (II): Changes in LV volume and function caused by PDA disappeared by 6 months after percutaneous closure. Even the children with normal-sized LV benefited from the procedure. (III): After repair of CoA, the RV size and the velocity time integrals of mitral inflow increased, and serum levels of natriuretic peptides decreased. Patients need close follow-up, despite cessation of LV pressure overload, since LV hypertrophy persisted even in normotensive patients with normal growth of the coarctation segment. (IV): In children with Mulibrey nanism, the LV wall was hypertrophied, with myocardial restriction and impairment of LV function. Significant correlations appeared between indices of LV function, size of the left atrium, and levels of natriuretic peptides, indicating that measurement of serum levels of natriuretic peptides can be used in the clinical follow-up of this patient group despite its dependence on loading conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cyclosporine is an immunosuppressant drug with a narrow therapeutic index and large variability in pharmacokinetics. To improve cyclosporine dose individualization in children, we used population pharmacokinetic modeling to study the effects of developmental, clinical, and genetic factors on cyclosporine pharmacokinetics in altogether 176 subjects (age range: 0.36–20.2 years) before and up to 16 years after renal transplantation. Pre-transplantation test doses of cyclosporine were given intravenously (3 mg/kg) and orally (10 mg/kg), on separate occasions, followed by blood sampling for 24 hours (n=175). After transplantation, in a total of 137 patients, cyclosporine concentration was quantified at trough, two hours post-dose, or with dose-interval curves. One-hundred-four of the studied patients were genotyped for 17 putatively functionally significant sequence variations in the ABCB1, SLCO1B1, ABCC2, CYP3A4, CYP3A5, and NR1I2 genes. Pharmacokinetic modeling was performed with the nonlinear mixed effects modeling computer program, NONMEM. A 3-compartment population pharmacokinetic model with first order absorption without lag-time was used to describe the data. The most important covariate affecting systemic clearance and distribution volume was allometrically scaled body weight i.e. body weight**3/4 for clearance and absolute body weight for volume of distribution. The clearance adjusted by absolute body weight declined with age and pre-pubertal children (< 8 years) had an approximately 25% higher clearance/body weight (L/h/kg) than did older children. Adjustment of clearance for allometric body weight removed its relationship to age after the first year of life. This finding is consistent with a gradual reduction in relative liver size towards adult values, and a relatively constant CYP3A content in the liver from about 6–12 months of age to adulthood. The other significant covariates affecting cyclosporine clearance and volume of distribution were hematocrit, plasma cholesterol, and serum creatinine, explaining up to 20%–30% of inter-individual differences before transplantation. After transplantation, their predictive role was smaller, as the variations in hematocrit, plasma cholesterol, and serum creatinine were also smaller. Before transplantation, no clinical or demographic covariates were found to affect oral bioavailability, and no systematic age-related changes in oral bioavailability were observed. After transplantation, older children receiving cyclosporine twice daily as the gelatine capsule microemulsion formulation had an about 1.25–1.3 times higher bioavailability than did the younger children receiving the liquid microemulsion formulation thrice daily. Moreover, cyclosporine oral bioavailability increased over 1.5-fold in the first month after transplantation, returning thereafter gradually to its initial value in 1–1.5 years. The largest cyclosporine doses were administered in the first 3–6 months after transplantation, and thereafter the single doses of cyclosporine were often smaller than 3 mg/kg. Thus, the results suggest that cyclosporine displays dose-dependent, saturable pre-systemic metabolism even at low single doses, whereas complete saturation of CYP3A4 and MDR1 (P-glycoprotein) renders cyclosporine pharmacokinetics dose-linear at higher doses. No significant associations were found between genetic polymorphisms and cyclosporine pharmacokinetics before transplantation in the whole population for which genetic data was available (n=104). However, in children older than eight years (n=22), heterozygous and homozygous carriers of the ABCB1 c.2677T or c.1236T alleles had an about 1.3 times or 1.6 times higher oral bioavailability, respectively, than did non-carriers. After transplantation, none of the ABCB1 SNPs or any other SNPs were found to be associated with cyclosporine clearance or oral bioavailability in the whole population, in the patients older than eight years, or in the patients younger than eight years. In the whole population, in those patients carrying the NR1I2 g.-25385C–g.-24381A–g.-205_-200GAGAAG–g.7635G–g.8055C haplotype, however, the bioavailability of cyclosporine was about one tenth lower, per allele, than in non-carriers. This effect was significant also in a subgroup of patients older than eight years. Furthermore, in patients carrying the NR1I2 g.-25385C–g.-24381A–g.-205_-200GAGAAG–g.7635G–g.8055T haplotype, the bioavailability was almost one fifth higher, per allele, than in non-carriers. It may be possible to improve individualization of cyclosporine dosing in children by accounting for the effects of developmental factors (body weight, liver size), time after transplantation, and cyclosporine dosing frequency/formulation. Further studies are required on the predictive value of genotyping for individualization of cyclosporine dosing in children.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fatty acids, fibre, carotenoids and tocopherols in relation to glucose metabolism in subjects at high risk for type 2 diabetes a cross-sectional analysis Type 2 diabetes (T2D) is a heterogeneous disorder of carbohydrate, lipid and protein metabolism, resulting from genetics, environmental influences and interactions between these. The disease is characterized by insulin resistance, β-cell dysfunction, hepatic glucose overproduction and disordered fat mobilization and storage. The literature on associations between dietary factors and glucose metabolism is inconsistent. One factor behind the discrepant results may be genetic heterogeneity of study populations. Data on nutrient-gene interactions in relation to glucose metabolism are scarce. Thus, investigating high-risk populations and exploring nutrient-gene interactions are essential for improving the understanding of T2D aetiology. Ideally, this information could help to develop prevention programmes that take into account the genetic predisposition to the disease. In this study, associations between measures of glucose metabolism predicting T2D and fatty acids, antioxidative nutrients and fibre were examined in a high-risk population, i.e., in non-diabetic relatives of affected patients. Interactions between the PPARG Pro12Ala polymorphism and fatty acids on glucose metabolism were taken into consideration. This common polymorphism plays an important role in the regulation of glucose metabolism. The inverse associations observed between dietary fibre and insulin resistance are consistent with the prevailing recommendations urging increased intake of fibre to prevent T2D. Beneficial associations observed between the intake of carotenoids and glucose levels stress that a high consumption of vegetables, fruits and berries rich in carotenoids might also play a role in the prevention of T2D. Whether tocopherols have an independent association with glucose metabolism remains questionable. Observed interactions between fatty acids and glucose metabolism suggest that a high intake of palmitic acid is associated with high fasting glucose levels mainly in female Ala allele carriers. Furthermore, the PPARG Pro12Ala polymorphism may modify the metabolic response to dietary marine fat. The beneficial associations of high intake of marine n 3 fatty acids with insulin resistance and glucose levels may be restricted to carriers of the Ala allele. The findings pertain to subjects with a family history of T2D, and the cross-sectional nature of the study precludes inferences about causality. Results nevertheless show that associations of dietary factors with glucose metabolism may be modulated by the genetic makeup of an individual. Additional research is warranted to elucidate the role of probably numerous nutrient-gene interactions, some of which may be sex-specific, in the aetiology of T2D.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and aims. Type 1 diabetes (T1D), an autoimmune disease in which the insulin producing beta cells are gradually destroyed, is preceded by a prodromal phase characterized by appearance of diabetes-associated autoantibodies in circulation. Both the timing of the appearance of autoantibodies and their quality have been used in the prediction of T1D among first-degree relatives of diabetic patients (FDRs). So far, no general strategies for identifying individuals at increased disease risk in the general population have been established, although the majority of new cases originate in this population. The current work aimed at assessing the predictive role of diabetes-associated immunologic and metabolic risk factors in the general population, and comparing these factors with data obtained from studies on FDRs. Subjects and methods. Study subjects in the current work were subcohorts of participants of the Childhood Diabetes in Finland Study (DiMe; n=755), the Cardiovascular Risk in Young Finns Study (LASERI; n=3475), and the Finnish Type 1 Diabetes Prediction and Prevention Study (DIPP) Study subjects (n=7410). These children were observed for signs of beta-cell autoimmunity and progression to T1D, and the results obtained were compared between the FDRs and the general population cohorts. --- Results and conclusions. By combining HLA and autoantibody screening, T1D risks similar to those reported for autoantibody-positive FDRs are observed in the pediatric general population. Progression rate to T1D is high in genetically susceptible children with persistent multipositivity. Measurement of IAA affinity failed in stratifying the risk assessment in young IAA-positive children with HLA-conferred disease susceptibility, among whom affinity of IAA did not increase during the prediabetic period. Young age at seroconversion, increased weight-for-height, decreased early insulin response, and increased IAA and IA-2A levels predict T1D in young children with genetic disease susceptibility and signs of advanced beta-cell autoimmunity. Since the incidence of T1D continues to increase, efforts aimed at preventing T1D are important, and reliable disease prediction is needed both for intervention trials and for effective and safe preventive therapies in the future. Our observations confirmed that combined HLA-based screening and regular autoantibody measurements reveal similar disease risks in pediatric general population as those seen in prediabetic FDRs, and that risk assessment can be stratified further by studying glucose metabolism of prediabetic subjects. As these screening efforts are feasible in practice, the knowledge now obtained can be exploited while designing intervention trials aimed at secondary prevention of T1D.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Hyperlipidemia is a common concern in patients with heterozygous familial hypercholesterolemia (HeFH) and in cardiac transplant recipients. In both groups, an elevated serum LDL cholesterol level accelerates the development of atherosclerotic vascular disease and increases the rates of cardiovascular morbidity and mortality. The purpose of this study is to assess the pharmacokinetics, efficacy, and safety of cholesterol-lowering pravastatin in children with HeFH and in pediatric cardiac transplant recipients receiving immunosuppressive medication. Patients and Methods. The pharmacokinetics of pravastatin was studied in 20 HeFH children and in 19 pediatric cardiac transplant recipients receiving triple immunosuppression. The patients ingested a single 10-mg dose of pravastatin, and plasma pravastatin concentrations were measured up to 10/24 hours. The efficacy and safety of pravastatin (maximum dose 10 to 60 mg/day and 10 mg/day) up to one to two years were studied in 30 patients with HeFH and in 19 cardiac transplant recipients, respectively. In a subgroup of 16 HeFH children, serum non-cholesterol sterol ratios (102 x mmol/mol of cholesterol), surrogate estimates of cholesterol absorption (cholestanol, campesterol, sitosterol), and synthesis (desmosterol and lathosterol) were studied at study baseline (on plant stanol esters) and during combination with pravastatin and plant stanol esters. In the transplant recipients, the lipoprotein levels and their mass compositions were analyzed before and after one year of pravastatin use, and then compared to values measured from 21 healthy pediatric controls. The transplant recipients were grouped into patients with transplant coronary artery disease (TxCAD) and patients without TxCAD, based on annual angiography evaluations before pravastatin. Results. In the cardiac transplant recipients, the mean area under the plasma concentration-time curve of pravastatin [AUC(0-10)], 264.1 * 192.4 ng.h/mL, was nearly ten-fold higher than in the HeFH children (26.6 * 17.0 ng.h/mL). By 2, 4, 6, 12 and 24 months of treatment, the LDL cholesterol levels in the HeFH children had respectively decreased by 25%, 26%, 29%, 33%, and 32%. In the HeFH group, pravastatin treatment increased the markers of cholesterol absorption and decreased those of synthesis. High ratios of cholestanol to cholesterol were associated with the poor cholesterol-lowering efficacy of pravastatin. In cardiac transplant recipients, pravastatin 10 mg/day lowered the LDL cholesterol by approximately 19%. Compared with the patients without TxCAD, patients with TxCAD had significantly lower HDL cholesterol concentrations and higher apoB-100/apoA-I ratios at baseline (1.0 ± 0.3 mmol/L vs. 1.4 ± 0.3 mmol/L, P = 0.031; and 0.7 ± 0.2 vs. 0.5 ± 0.1, P = 0.034) and after one year of pravastatin use (1.0 ± 0.3 mmol/L vs. 1.4 ± 0.3 mmol/L, P = 0.013; and 0.6 ± 0.2 vs. 0.4 ± 0.1, P = 0.005). Compared with healthy controls, the transplant recipients exhibited elevated serum triglycerides at baseline (median 1.3 [range 0.6-3.2] mmol/L vs. 0.7 [0.3-2.4] mmol/L, P=0.0002), which negatively correlated with their HDL cholesterol concentration (r = -0.523, P = 0.022). Recipients also exhibited higher apoB-100/apoA1 ratios (0.6 ± 0.2 vs. 0.4 ± 0.1, P = 0.005). In addition, elevated triglyceride levels were still observed after one year of pravastatin use (1.3 [0.5-3.5] mmol/L vs. 0.7 [0.3-2.4] mmol/L, P = 0.0004). Clinically significant elevations in alanine aminotransferase, creatine kinase, or creatinine ocurred in neither group. Conclusions. Immunosuppressive medication considerably increased the plasma pravastatin concentrations. In both patient groups, pravastatin treatment was moderately effective, safe, and well tolerated. In the HeFH group, high baseline cholesterol absorption seemed to predispose patients to insufficient cholesterol-lowering efficacy of pravastatin. In the cardiac transplant recipients, low HDL cholesterol and a high apoB-100/apoA-I ratio were associated with development of TxCAD. Even though pravastatin in the transplant recipients effectively lowered serum total and LDL cholesterol concentrations, it failed to normalize their elevated triglyceride levels and, in some patients, to prevent the progression of TxCAD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoporosis is not only a disease of the elderly, but is increasingly diagnosed in chronically ill children. Children with severe motor disabilities, such as cerebral palsy (CP), have many risk factors for osteoporosis. Adults with intellectual disability (ID) are also prone to low bone mineral density (BMD) and increased fractures. This study was carried out to identify risk factors for low BMD and osteoporosis in children with severe motor disability and in adults with ID. In this study 59 children with severe motor disability, ranging in age from 5 to 16 years were evaluated. Lumbar spine BMD was measured with dual-energy x-ray absorptiometry. BMD values were corrected for bone size by calculating bone mineral apparent density (BMAD), and for bone age. The values were transformed into Z-scores by comparison with normative data. Spinal radiographs were assessed for vertebral morphology. Blood samples were obtained for biochemical parameters. Parents were requested to keep a food diary for three days. The median daily energy and nutrient intakes were calculated. Fractures were common; 17% of the children had sustained peripheral fractures and 25% had compression fractures. BMD was low in children; the median spinal BMAD Z-score was -1.0 (range -5.0 – +2.0) and the BMAD Z-score <-2.0 in 20% of the children. Low BMAD Z-score and hypercalciuria were significant risk factors for fractures. In children with motor disability, calcium intakes were sufficient, while total energy and vitamin D intakes were not. In the vitamin D intervention studies, 44 children and adolescents with severe motor disability and 138 adults with ID were studied. After baseline blood samples, the children were divided into two groups; those in the treatment group received 1000 IU peroral vitamin D3 five days a week for 10 weeks, and subjects in the control group continued with their normal diet. Adults with ID were allocated to receive either 800 IU peroral vitamin D3 daily for six months or a single intramuscular injection of 150 000 IU D3. Blood samples were obtained at baseline and after treatment. Serum concentrations of 25-OH-vitamin D (S-25-OHD) were low in all subgroups before vitamin D intervention: in almost 60% of children and in 77% of adults the S-25-OHD concentration was below 50 nmol/L, indicating vitamin D insufficiency. After vitamin D intervention, 19% of children and 42% adults who received vitamin D perorally and 12% of adults who received vitamin D intramuscularly had optimal S-25-OHD (>80 nmol/L). This study demonstrated that low BMD and peripheral and spinal fractures are common in children with severe motor disabilities. Vitamin D status was suboptimal in the majority of children with motor disability and adults with ID. Vitamin D insufficiency can be corrected with vitamin D supplements; the peroral dose should be at least 800 IU per day.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic periodontitis results from a complex aetiology, including the formation of a subgingival biofilm and the elicitation of the host s immune and inflammatory response. The hallmark of chronic periodontitis is alveolar bone loss and soft periodontal tissue destruction. Evidence supports that periodontitis progresses in dynamic states of exacerbation and remission or quiescence. The major clinical approach to identify disease progression is the tolerance method, based on sequential probing. Collagen degradation is one of the key events in periodontal destructive lesions. Matrix metalloproteinase (MMP)-8 and MMP-13 are the primary collagenolytic MMPs that are associated with the severity of periodontal inflammation and disease, either by a direct breakdown of the collagenised matrix or by the processing of non-matrix bioactive substrates. Despite the numerous host mediators that have been proposed as potential biomarkers for chronic periodontitis, they reflect inflammation rather than the loss of periodontal attachment. The aim of the present study was to determine the key molecular MMP-8 and -13 interactions in gingival crevicular fluid (GCF) and gingival tissue from progressive periodontitis lesions and MMP-8 null allele mouse model. In study (I), GCF and gingival biopsies from active and inactive sites of chronic periodontitis patients, which were determined clinically by the tolerance method, and healthy GCF were analysed for MMP-13 and tissue inhibitor of matrix metalloproteinases (TIMP)-1. Chronic periodontitis was characterised by increased MMP-13 levels and the active sites showed a tendency of decreased TIMP-1 levels associated with increments of MMP-13 and total protein concentration compared to inactive sites. In study (II), we investigated whether MMP-13 activity was associated with TIMP-1, bone collagen breakdown through ICTP levels, as well as the activation rate of MMP-9 in destructive lesions. The active sites demonstrated increased GCF ICTP levels as well as lowered TIMP-1 detection along with elevated MMP-13 activity. MMP-9 activation rate was enhanced by MMP-13 in diseased gingival tissue. In study (III), we analysed the potential association between the levels, molecular forms, isoenzyme distribution and degree of activation of MMP-8, MMP-14, MPO and the inhibitor TIMP-1 in GCF from periodontitis progressive patients at baseline and after periodontal therapy. A positive correlation was found for MPO/MMP-8 and their levels associated with progression episodes and treatment response. Because MMP-8 is activated by hypochlorous acid in vitro, our results suggested an interaction between the MPO oxidative pathway and MMP-8 activation in GCF. Finally, in study (IV), on the basis of the previous finding that MMP-8-deficient mice showed impaired neutrophil responses and severe alveolar bone loss, we aimed to characterise the detection patterns of LIX/CXCL5, SDF-1/CXCL12 and RANKL in P. gingivalis-induced experimental periodontitis and in the MMP-8-/- murine model. The detection of neutrophil-chemoattractant LIX/CXCL5 was restricted to the oral-periodontal interface and its levels were reduced in infected MMP-8 null mice vs. wild type mice, whereas the detection of SDF-1/CXCL12 and RANKL in periodontal tissues increased in experimentally-induced periodontitis, irrespectively from the genotype. Accordingly, MMP-8 might regulate LIX/CXCL5 levels by undetermined mechanisms, and SDF-1/CXCL12 and RANKL might promote the development and/or progression of periodontitis.