965 resultados para z-scan


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a new approach that uses the single beam Z-scan technique, to discriminate between excited state absorption (ESA) and two and three photon nonlinear absorption. By measuring the apparent delay or advance of the pulse in reaching the detector, the nonlinear absorption can be unambiguously identified as either instantaneous or transient. The simple method does not require a large range of input fluences or sophisticated pulse-probe experimental apparatus. The technique is easily extended to any absorption process dependent on pulse width and to nonlinear refraction measurements. We demonstrate in particular, that the large nonlinear absorption in ZnO nanocones when exposed to nanosecond 532 nm pulses, is due mostly to ESA, not pure two-photon absorption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonlinear optical properties (NLO) of a graphene oxide-silver (GO-Ag) nanocomposite have been investigated by the Z-scan setup at Q-switched Nd:YAG laser second harmonic radiation i.e., at 532 nm excitation in a nanosecond regime. A noteworthy enhancement in the NLO properties in the GO-Ag nanocomposite has been reported in comparison with those of the synthesized GO nanosheet. The extracted value of third order nonlinear susceptibility (chi(3)), at a peak intensity of I-0 = 0.2 GW cm(-2), for GO-Ag has been found to be 2.8 times larger than that of GO. The enhancement in NLO properties in the GO-Ag nanocomposite may be attributed to the complex energy band structures formed during the synthesis which promote resonant transition to the conduction band via surface plasmon resonance (SPR) at low laser intensities and excited state transition (ESA) to the conduction band of GO at higher intensities. Along with this photogenerated charge carriers in the conduction band of silver or the increase in defect states during the formation of the GO-Ag nanocomposite may contribute to ESA. Open aperture Z-scan measurement indicates reverse saturable absorption (RSA) behavior of the synthesized nanocomposite which is a clear indication of the optical limiting (OL) ability of the nanocomposite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Z-scan technique is useful for measuring the nonlinear refractive index of thin films. In conventional Z-scan theories, two effects are often ignored, namely the losses due to the internal multi-interference and the nonlinear absorption inside the sample. Therefore, the theories are restricted to relatively thick films. For films thinner than about 100 nm, the two effects become significant, and thus cannot be ignored. In the present work, we present a Z-scan theory that takes both effects into account. The proposed model calculation is suitable for optical nonlinear films of nanometric thickness. With numerical simulations, we demonstrate dramatic deviations from the conventional Z-scan calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on Fresnel-Mrchhoff diffraction theory, a diffraction model of nonlinear optical media interacting with a Gaussian beam has been set up that can interpret the Z-scan phenomenon in a new way. This theory not only is consistent with the conventional Z-scan theory for a small nonlinear phase shift but also can be used for larger nonlinear phase shifts. Numerical computations indicate that the shape of the Z-scan curve is greatly affected by the value of the nonlinear phase shift. The symmetric dispersionlike Z-scan curve is valid only for small nonlinear p base shifts (\Deltaphi(0)\ < pi), but, with increasingly larger nonlinear phase shifts, the valley of the transmittance is severely suppressed and the peak is greatly enhanced. The power output through the aperture will oscillate with increasing nonlinear phase shift caused by the input laser power. The aperture transmittance will attenuate and saturate with increasing Kerr constant. (C) 2003 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

International School of Photonics, Cochin University of Science & Technology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonlinear optical processes in organic compounds have attracted considerable interest in the field of science and technology because of their compelling technological promises in fields of optical communication,computing,switching and signal processing.As a result of the synthesis of novel organic compounds with varying degree of nonlinear optical strength, many practical devices based on these are getting realised giving new theoretical insights into the nonolinear optical behaviour of materials.Organic compounds like phthalocyanines and porphyrins have evoked great deal of interest in the field of photonic technology.The present thesis describes the results obtained from the investigations carried out on the nonlinear optical properties of certain organo-metallic compounds using Z-Scan and DFWM techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Third order nonlinear susceptibility χ(3) and second hyperpolarizability (γ) of a bis-naphthalocyanine viz. europium naphthalocyanines, Eu(Nc)2, were measured in dimethyl formamide solution using degenerate four wave mixing at 532 nm under nanosecond pulse excitation. Effective nonlinear absorption coefficient, βeff and imaginary part of nonlinear susceptibility, Im(χ(3)) were obtained using open aperture /Z-scan technique at the same wavelength. Optical limiting property of the sample was also investigated. The role of excited state absorption in deciding the nonlinear properties of this material is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

International School of Photonics, Cochin University of Science and Technology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In rare earth ion doped solids, a resonant non-linear refractive index, n2, appears when the laser pumps one of the ion excited states and the refractive index change is proportional to the excited state population. In these solids there are usually thermal and non-thermal lensing effects, where the non-thermal one is due to the polarizability difference, Δα, between excited and ground states of the ions. We have used the time resolved Z-scan and a mode-mismatched thermal lens technique with an Ar+ ion laser in Er+3 (20ZnF2-20SrF2-2NaF-16BaF2-6GaF3-(36 - x)InF3-xErF3, with x= 1, 2, 3 and 4 mol%) and Nd+3 (20SrF2-16BaF2-20ZnF2-2GdF3-2NaF-(40 - x)InF3-xNdF3, with x = 0.1, 0.25, 0.5-1 mol%) doped fluoroindate glasses. In both samples we found that the non-linear refraction is due to the thermal effect, while the non-thermal effect is negligible. This result indicates that in fluoride glasses Δα is very small (less than 10-26 cm3). We also measured the imaginary part of the non-linear refractive index (n″2) due to absorption saturation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the occurrence of the optical Kerr effect and two-photon absorption when an oil-based magnetic Fe3O4 nanoparticles colloidal suspension is illuminated with high intensity femtosecond laser pulses. The frequency of the pulses is controlled and the Z-scan technique is employed in our measurements of the nonlinear optical Kerr coefficient (n(2)) and two-photon absorption coefficient (beta). From these values it was possible to calculate the real and imaginary parts of the third-order susceptibility. We observed that increasing the pulse frequency, additional physical processes take place, increasing artificially the absolute values of n(2) and beta. The experimental conditions are discussed to assure the obtention of reliable values of these nonlinear optical parameters, which may be useful in all-optical switching and optical power limiting applications. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4723829]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modifications in low-density lipoprotein (LDL) have emerged as a major pathogenic factor of atherosclerosis, which is the main cause of morbidity and mortality in the western world. Measurements of the heat diffusivity of human LDL solutions in their native and in vitro oxidized states are presented by using the Z-Scan (ZS) technique. Other complementary techniques were used to obtain the physical parameters necessary to interpret the optical results, e. g., pycnometry, refractometry, calorimetry, and spectrophotometry, and to understand the oxidation phase of LDL particles. To determine the sample's thermal diffusivity using the thermal lens model, an iterative one-parameter fitting method is proposed which takes into account several characteristic ZS time-dependent and the position-dependent transmittance measurements. Results show that the thermal diffusivity increases as a function of the LDL oxidation degree, which can be explained by the increase of the hydroperoxides production due to the oxidation process. The oxidation products go from one LDL to another, disseminating the oxidation process and caring the heat across the sample. This phenomenon leads to a quick thermal homogenization of the sample, avoiding the formation of the thermal lens in highly oxidized LDL solutions. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.10.105003]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we investigate the singlet excited state absorption of lutetium bisphthalocyanine (LuPc2) over a wide spectral range. It was observed distinct nonlinear absorption behaviors; saturable (SA) and reverse saturable absorption (RSA). The RSA effect was observed below 640 and above 680 nm, while SA occurs around the Q-band region, located around 660 nm. To describe the main singlet-singlet transitions, we employed the rate equation model considering the simplified three-energy level diagram. Our results reveal a ratio between excited and ground state absorption smaller than 0.05 at the Q-band region, and of approximately 4 for the other regions. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Neste trabalho utilizamos a técnica de varredura-Z para a determinação dos parâmetros ópticos não-lineares (índice de refração não-linear e coeficiente de absorção não-linear) do ácido oleico e das soluções de beta-caroteno diluído em ácido oleico. As concentrações das soluções estudadas foram as seguintes: 0, 5:6, 11:3, 22:5, 30, 45 e 60 μg=ml, os índices de refração foram calculados levando-se em consideração os dados experimentais e o modelo teórico previsto por Sheik-Bahae. As soluções de ácido oleico puro e de ácido oleico com beta-caroteno (60 μg=ml) apresentaram absorção não-linear e seus respectivos coeficientes foram calculados. Obtivemos também os índices de refração não-linear para os óleos de andiroba, buriti e copaíba, todos nativos da região Amazônica.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Zinc oxide (ZnO) is one of the most intensely studied wide band gap semiconductors due to its many desirable properties. This project established new techniques for investigating the hydrodynamic properties of ZnO nanoparticles, their assembly into useful photonic structures, and their multiphoton absorption coefficients for excitation with visible or infrared light rather than ultraviolet light. The methods developed are also applicable to a wide range of nanoparticle samples.