961 resultados para wound healing promoting agent
Resumo:
Human platelet-derived growth factor (PDGF) was purified from lysates of clinically outdated human platelets by ionic exchange chromatography in CM-Sepharose. The eluated fraction was submitted to the Immunoblot/Slot Blot assay using anti-PDGF-AA and anti-PDGF-BB polyclonal antibodies and was evaluated as to its biological activity through the test of [H 3]-thymidine incorporation in NIH/3T3 cell line fibroblasts in culture. The Immunoblot/Slot Blot assay using anti-PDGF-AA and anti-PDGF-BB antibodies proved the presence of the PDGF in chromatographic cationic fraction. The comparison of biological activities between fiblobrast stimulation assay using recombinant PDGF-AB and partially purified PDGF was demonstrated in 165.796 and 157.567 cpm, respectively. This result, proved the potent mitogenic effect of partially purified PDGF and consequently their evidence about the wound healing activity.
Resumo:
Signal transducer and activator of transcription (STAT) 3 is a pleiotropic transcription factor with important functions in cytokine signaling in a variety of tissues. However, the role of STAT3 in the intestinal epithelium is not well understood. We demonstrate that development of colonic inflammation is associated with the induction of STAT3 activity in intestinal epithelial cells (IECs). Studies in genetically engineered mice showed that epithelial STAT3 activation in dextran sodium sulfate colitis is dependent on interleukin (IL)-22 rather than IL-6. IL-22 was secreted by colonic CD11c(+) cells in response to Toll-like receptor stimulation. Conditional knockout mice with an IEC-specific deletion of STAT3 activity were highly susceptible to experimental colitis, indicating that epithelial STAT3 regulates gut homeostasis. STAT3(IEC-KO) mice, upon induction of colitis, showed a striking defect of epithelial restitution. Gene chip analysis indicated that STAT3 regulates the cellular stress response, apoptosis, and pathways associated with wound healing in IECs. Consistently, both IL-22 and epithelial STAT3 were found to be important in wound-healing experiments in vivo. In summary, our data suggest that intestinal epithelial STAT3 activation regulates immune homeostasis in the gut by promoting IL-22-dependent mucosal wound healing.
Plasmacytoid dendritic cells sense skin injury and promote wound healing through type I interferons.
Resumo:
Plasmacytoid dendritic cells (pDCs) are specialized type I interferon (IFN-α/β)-producing cells that express intracellular toll-like receptor (TLR) 7 and TLR9 and recognize viral nucleic acids in the context of infections. We show that pDCs also have the ability to sense host-derived nucleic acids released in common skin wounds. pDCs were found to rapidly infiltrate both murine and human skin wounds and to transiently produce type I IFNs via TLR7- and TLR9-dependent recognition of nucleic acids. This process was critical for the induction of early inflammatory responses and reepithelization of injured skin. Cathelicidin peptides, which facilitate immune recognition of released nucleic acids by promoting their access to intracellular TLR compartments, were rapidly induced in skin wounds and were sufficient but not necessary to stimulate pDC activation and type I IFN production. These data uncover a new role of pDCs in sensing tissue damage and promoting wound repair at skin surfaces.
Resumo:
Phenytoin is an anticonvulsant that has been used in wound healing. The objectives of this study were to describe how the scientific production presents the use ofphenytoinas a healing agent and to discuss its applicability in wounds. A literature review and hierarchy analysis of evidence-based practices was performed. Eighteen articles were analyzed that tested the intervention in wounds such as leprosy ulcers, leg ulcers, diabetic foot ulcers, pressure ulcers, trophic ulcers, war wounds, burns, preparation of recipient graft area, radiodermatitis and post-extraction of melanocytic nevi. Systemic use ofphenytoinin the treatment of fistulas and the hypothesis of topical use in the treatment of vitiligo were found. In conclusion, topical use ofphenytoinis scientifically evidenced. However robust research is needed that supports a protocol for the use ofphenytoinas another option of a healing agent in clinical practice.
Resumo:
RGD peptide sequences are known to regulate cellular activities by interacting with α5β1, αvβ5 and αvβ3 integrin, which contributes to the wound healing process. In this study, RGDC peptide was immobilized onto chitosan derivative 1,6-diaminohexane-O-carboxymethyl-N,N,N-trimethyl chitosan (DAH-CMTMC) to display RGDC-promoting adhesion for enhanced wound healing. The efficiency of N-methylation, O-carboxymethylation and spacer grafting was quantitatively and qualitatively analyzed by (1)H NMR and FTIR, yielding 0.38 degree of substitution for N-methylation and >0.85 for O-carboxymethylation. The glass transition temperatures for chitosan derivatives were also studied. Peptide immobilization was achieved through sulfhydryl groups using sulfosuccinimidyl (4-iodoacetyl)amino-benzoate (sulfo-SIAB method). RGDC immobilized peptide onto DAH-CMTMC was found to be about 15.3μg/mg of chitosan derivative by amino acid analysis (AAA). The significant increase of human dermal fibroblast (HDF) viability in vitro over 7 days suggests that RGDC-functionalized chitosan may lead to enhanced wound healing (viability >140%). Moreover, bio-adhesion and proliferation assays confirmed that coatings of RGDC-functionalized chitosan derivatives exhibit in vitro wound healing properties by enhancing fibroblast proliferation and adhesion. These results showed that RGDC peptide-functionalized chitosan provides an optimal environment for fibroblast adhesion and proliferation.
Resumo:
Matrix metalloproteinase-13 (MMP-13) is a potent proteolytic enzyme, whose expression has been previously associated with fetal bone development and postnatal bone remodeling and with adult gingival wound healing. MMP-13 is also known to be involved in the growth and invasion of various cancers including squamous cell carcinoma (SCC) of the skin. The aim of this study was to further elucidate the function and regulation of MMP-13 in wound repair and cancer. In this study, it was shown that fetal skin fibroblasts express MMP-13 in response to transforming growth factor-β in a p38 MAP kinase dependent manner. In addition, MMP-13 was found to be expressed in vivo by wound fibroblasts in human fetal skin grafted on SCID mice. Adenovirally delivered expression of MMP-13 enhanced collagen matrix contraction by fibroblasts in vitro in association with altered cytoskeletal structure, enhanced proliferation and survival. These results indicate that MMP-13 is involved in cell-mediated collagen matrix remodeling and suggest a role for MMP-13 in superior matrix remodeling and scarless healing of fetal skin wounds. Using an MMP-13 deficient mouse strain, it was shown that MMP-13 is essential for the normal development of experimental granulation tissue in mice. MMP-13 was implicated in the regulation of myofibroblast function and angiogenesis and the expression of genes involved in cellular proliferation and movement, immune response, angiogenesis and proteolysis. Finally, epidermal mitogen, keratinocyte growth factor (KGF) was shown to suppress the malignant properties of skin SCC cells by downregulating the expression of several target genes with potential cancer promoting properties, including MMP-13, and by reducing SCC cell invasion. These results provide evidence that MMP-13 potently regulates cell viability, myofibroblast function and angiogenesis associated with wound healing and cancer. In addition, fibroblasts expressing MMP-13 show high collagen reorganization capacity. Moreover, the results suggest that KGF mediates the anti-cancer effects on skin SCC
Resumo:
Low-level laser therapy (LLLT) has been shown to have several biological effects that favor the healing process, and nicotine has been shown to delay the healing process. In this study we investigated the healing of open wounds created on the back of rats treated with nicotine with or without LLLT. of 115 animals, 59 received subcutaneous injections of saline solution, and the others received subcutaneous injections of nicotine (3 mg/kg body weight), twice a day throughout the study period. After 30 days, skin wounds were created on the back of the animals. The animals receiving saline injections were divided into two groups: group 1 (G1, n = 29), in which the wounds were left untreated, and group 2 (G2, n = 30), in which the wounds were treated with LLLT (GaAlAs, 660 nm, 30 mW, 5.57 J/cm(2) per point, 0.39 J, 13 s per point, 0.42 W/cm(2)). The animals receiving nicotine injections were also divided into two groups: group 3 (G3, n = 29), in which the wounds were left untreated, and group 4 (G4, n = 27), in which the wounds were treated with LLLT. The animals were killed 3, 7 or 14 days after surgery. Wound healing was evaluated histologically both qualitatively and semiquantitatively. Wounds of G2 showed a delay in epithelial migration and connective tissue organization compared to those of G1. Wounds of G2 showed faster healing than those of G1; similarly, wounds of G4 showed more advanced healing than those of G3. LLLT acted as a biostimulatory coadjuvant agent balancing the undesirable effects of nicotine on wound tissue healing.
Resumo:
Este estudo foi desenvolvido com a finalidade de investigar a possível influência do processo de cicatrização sobre o desenvolvimento neoplásico à distância, em um modelo experimental de carcinogênese do colon induzido pela 1,2 dimetil-hidrazina ( DMH). Ratos Wistar machos receberam injeções semanais de DMH ( 20mg/Kg, via subcutânea) ou solução salina, durante oito semanas. Na nona semana, um grupo tratado com DMH e um controle, foram submetidos à intervenção cirúrgica para retirada de um retalho cutâneo de 4cm no flanco direito, que cicatrizou por segunda intenção. Na 12ª semana, logo após o fechamento da ferida cutânea, os animais foram submetidos à eutanásia. O colon foi dividido em segmentos proximal e distal e examinado a nível macroscópico e histológico. Foram analisadas a incidência, distribuição e morfologia das lesões. O número total de tumores na mucosa do colon e o número de tumores por animal foi significantimente maior no grupo submetido à ferida cutânea do que no grupo tratado somente com DMH. O número de carcinomas pouco diferenciados foi significantimente maior no grupo com ferida cutânea do que em seu respectivo controle. Estes resultados sugerem que o processo de reparação de uma ferida cutânea favorece o desenvolvimento neoplásico em um órgão à distância, tal como o colon e que este efeito parece estar relacionado ao tipo histológico da neoplasia.
Resumo:
Objective: the aim of the present study was to evaluate the effect of low-intensity laser therapy on the wound healing process treated with steroid. Background Data: Various biological effects have been associated with low-level laser therapy (LLLT). Materials and Methods: Forty-eight rats were used, and after execution of a wound on the dorsal region of each animal, they were divided into 4 groups (n = 12), receiving the following treatments: G1 (control), wounds and animals received no treatment; G2, wounds were treated with LLLT; G3, animals received an intraperitoneal injection of steroid dosage (2 mg/kg of body weight); G4, animals received steroid and wounds were treated with LLLT. The laser emission device used was a GaAIAs (904 nm), in a contact mode, with 2.75 mW gated with 2.900 Hz during 120 sec (33 J/cm(2)). After the period of 3, 7, and 14 days, the animals were sacrificed and the parts sent to histological processing and dyed using hematoxylin and eosin (HE) and Masson trichromium (MT) techniques. Results: the results have shown that the wounds treated with steroid had a delay in healing, while LLLT accelerated the wound healing process. Also, wounds treated with laser in the animals treated with steroid presented a differentiated healing process with a larger collagen deposition and also a decrease in both the inflamatory infiltrated and the delay on the wound healing process. Conclusion: LLLT accelerated healing, caused by the steroid, acting as a biostimulative coadjutant agent, balancing the undesirable effects of cortisone (in the tissue healing process.
Resumo:
Among remarkable discoveries concerning propolis, such as antifungal, antiviral, and antioxidant activities, its anti-inflammatory, and mainly its antibacterial, properties deserve special attention when skin wound healing is concerned. Based on this and knowing the distinctive performance of bacterial (BC) membranes on wound healing, in this work it is proposed to demonstrate the potent antimicrobial activity and wound healing properties of a novel propolis containing biocellulose membrane. The obtained propolis/BC membrane was able to adsorb propolis not only on the surface, but also in its interstices demonstrated by scanning electron microscopy, X-ray diffraction, Fourier transform infrared (FT-IR) spectroscopy, and thermogravidimetric assays. Additionally, the polyphenolic compounds determination and the prominent antibacterial activity in the membrane are demonstrated to be dose dependent, supporting the possibility of obtaining propolis/BC membranes at the desired concentrations, taking into consideration its application and its skin residence time. Finally, it could be suggested that propolis/BC membrane may favor tissue repair in less time and more effectively in contaminated wounds. © 2013 Hernane da Silva Barud et al.
Resumo:
Enhancement of collagen's physical characteristics has been traditionally approached using various physico-chemical methods frequently compromising cell viability. Microbial transglutaminase (mTGase), a transamidating enzyme obtained from Streptomyces mobaraensis, was used in the cross-linking of collagen-based scaffolds. The introduction of these covalent bonds has previously indicated increased proteolytic and mechanical stability and the promotion of cell colonisation. The hypothesis behind this research is that an enzymatically stabilised collagen scaffold will provide a dermal precursor with enhanced wound healing properties. Freeze-dried scaffolds, with and without the loading of a site-directed mammalian transglutaminase inhibitor to modulate matrix deposition, were applied to full thickness wounds surgically performed on rats’ dorsum and explanted at three different time points (3, 7 and 21 days). Wound healing parameters such as wound closure, epithelialisation, angiogenesis, inflammatory and fibroblastic cellular infiltration and scarring were analysed and quantified using stereological methods. The introduction of this enzymatic cross-linking agent stimulated neovascularisation and epithelialisation resisting wound contraction. Hence, these characteristics make this scaffold a potential candidate to be considered as a dermal precursor.
Resumo:
Skin-wound healing is a complex and dynamic biological process involving inflammation, proliferation, and remodeling. Recent studies have shown that statins are new therapeutical options because of their actions, such as anti-inflammatory and antioxidant activity, on vasodilation, endothelial dysfunction and neoangiogenesis, which are independent of their lipid-lowering action. Our aim was to investigate the effect of atorvastatin on tissue repair after acute injury in healthy animals. Rats were divided into four groups: placebo-treated (P), topical atorvastatin-treated (AT), oral atorvastatin-treated (AO), topical and oral atorvastatin-treated (ATO). Under anesthesia, rats were wounded with an 8-mm punch in the dorsal region. Lesions were photographed on Days 0, 1, 3, 7, 10, 12, and 14 post-injury and samples taken on Days 1, 3, 7, and 14 for protein-expression analysis of insulin receptor substrate (IRS)-1, phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), glycogen synthase kinase (GSK)-3, endothelial nitric oxide synthase (eNOS), vascular endothelial growth factor (VEGF), extracellular signal-regulated kinase (ERK), interleukin (IL)-10, IL-1β, IL-6, and tumor necrosis factor (TNF)-α. Upon macroscopic examination, we observed significant reductions of lesion areas in groups AT, AO, and ATO compared to the P group. Additionally, AT and AO groups showed increased expression of IRS-1, PI3K, Akt, GSK-3, and IL-10 on Days 1 and 3 when compared with the P group. All atorvastatin-treated groups showed higher expression of IRS-1, PI3K, Akt, GSK-3, IL-10, eNOS, VEGF, and ERK on Day 7. On Days 1, 3, and 7, all atorvastatin-treated groups showed lower expression of IL-6 and TNF-α when compared with the P group. We conclude that atorvastatin accelerated tissue repair of acute lesions in rats and modulated expressions of proteins and cytokines associated with cell-growth pathways.
Resumo:
Objective: We sought to investigate the wound-healing process after photodynamic therapy (PDT) mediated by methylene blue dye (MB). Background Data: Few scientific studies show the PDT roles in wound healing. Materials and Methods: One hundred rats were given a circular wound on the back, inflicted with a 6-mm-diameter punch. The animals were divided into four groups: control (no treatment); dye (topical application of MB); laser (InGaAlP, 117.85 J/cm(2), 100 mW, 660 nm, single point); and PDT (topical application of MB followed by laser irradiation). After 1, 3, 5, 7, and 14 days, the cutaneous wounds were photographed and assessed with histopathologic examination by using light microscope. Changes seen in edema, necrosis, inflammation, granulation tissue, re-epithelialization, and number of young fibroblasts were semiquantitatively evaluated. The wound-area changes were measured with special software and submitted to statistical analysis. Results: The laser group demonstrated the smallest wound area at 14 days after the surgical procedure (p<0.01). Concerning complete re-epithelialization, the laser group showed it at 5-7 days after surgery, whereas the PDT and the other groups showed it at 14 days. Conclusions: Laser interaction with tissue is somehow changed when exposed to the MB. PDT mediated by MB was not prejudicial to wound healing, as no delay occurred compared with the control group.
Resumo:
Propolis is a chemically complex resinous bee product which has gained worldwide popularity as a means to improve health condition and prevent diseases. The main constituents of an aqueous extract of a sample of green propolis from Southeast Brazil were shown by high performance liquid chromatography/mass spectroscopy/mass spectroscopy to be mono- and di-O-caffeoylquinic acids; phenylpropanoids known as important constituents of alcohol extracts of green propolis, such as artepillin C and drupanin were also detected in low amounts in the aqueous extract. The anti-inflammatory activity of this extract was evaluated by determination of wound healing parameters. Female Swiss mice were implanted subcutaneously with polyesther-polyurethane sponge discs to induce wound healing responses, and administered orally with green propolis (500mg kg(-1)). At 4, 7 and 14 days post-implantation, the fibrovascular stroma and deposition of extracellular matrix were evaluated by histopathologic and morphometric analyses. In the propolis-treated group at Days 4 and 7 the inflammatory process in the sponge was reduced in comparison with control. A progressive increase in cell influx and collagen deposition was observed in control and propolis-treated groups during the whole period. However, these effects were attenuated in the propolis-treated group at Days 4 and 7, indicating that key factors of the wound healing process are modulated by propolis constituents.
Resumo:
Study Design, The study group consisted of 53 patients who underwent 75 operations for spine metastases. Patient and tumor demographic factors, preoperative nutritional status, and perioperative adjunctive therapy were retrospectively reviewed. Objective, To determine the risk factors for wound breakdown and infection in patients undergoing surgery for spinal metastases. Summary of Background Data. Spinal Fusion using spine implants may be associated with an infection rate of 5% or more. Surgery for spine metastases is associated with an infection rate of more than 10%. Factors other than the type of surgery performed may account for the greater infection rate. Methods. Data were obtained by reviewing patient records. Age, sex, and neurologic status of the patient; tumor type and site; and surgical details were noted. Adjunctive treatment with corticosteroids and radiotherapy was recorded, Nutritional status was evaluated by determining serum protein and serum albumin concentrations and by total lymphocyte count. Results. Wound breakdown and Infection occurred in 75 of 75 wounds. No patient or tumor demographic factors other than intraoperative blood loss (P < 0.1) were statistically associated with infection; The correlation between preoperative protein deficiency (P < 0.01) or perioperative corticosteroid administration (P < 0.10) and wound infection was significant. There was no statistical correlation between lymphocyte count or perioperative radiotherapy and wound infection. Conclusions, The results indicate that preoperative protein depletion and perioperative administration of corticosteroids are risk factors for wound infection in patients undergoing surgery for spine metastases, Perioperative correction of nutritional depletion and cessation of steroid therapy may reduce wound complications.