998 resultados para whole grain corn


Relevância:

100.00% 100.00%

Publicador:

Resumo:

For a lamb feedlot system became competitive it is essential that an equilibrate nutrition and functional feeding management happens naturally. Therefore, this experiment has the objective to evaluate the efficiency of whole corn grain diet on lambs performance and carcass quality parameters and ruminal papillae development. During the experiment twenty Dorper/Santa Inescrossbred lambs were used, divided randomly in two treatments: control diet and whole grain diet. The experimental design was completely randomized design and data analysis done by SISVAR using the Tukey test at 5% of probability. No statistical differences were observed on the characteristics evaluated for performance and carcass as well as the length and width of ruminal papillae. The composition of the diet together with the weight gain potential of the lambs can explain the good average daily weight gain of 0.284 kg. The initial body condition average was 2.1 (thin) and improved at the end of the trial period achieving3.15 (normal). Carcass yield reached 46.24%, the results is between the range ideal for specialty meat breeds ranging from 40 to 50%. The carcass conformation, fat cover conformation and the thickness of subcutaneous fat found can be classified as medians. Also there was no difference in the characteristics of ruminal papillae. Thus, it is concluded that the use of whole grain diet did not influence the characteristics evaluated; and the choice of diet should be made with regard to profitability, simplicity of use and availability of forage in feedlot. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Whole-grain foods are touted for multiple health benefits, including enhancing insulin sensitivity and reducing type 2 diabetes risk. Recent genome-wide association studies (GWAS) have identified several single nucleotide polymorphisms (SNPs) associated with fasting glucose and insulin concentrations in individuals free of diabetes. We tested the hypothesis that whole-grain food intake and genetic variation interact to influence concentrations of fasting glucose and insulin. Via meta-analysis of data from 14 cohorts comprising ∼ 48,000 participants of European descent, we studied interactions of whole-grain intake with loci previously associated in GWAS with fasting glucose (16 loci) and/or insulin (2 loci) concentrations. For tests of interaction, we considered a P value <0.0028 (0.05 of 18 tests) as statistically significant. Greater whole-grain food intake was associated with lower fasting glucose and insulin concentrations independent of demographics, other dietary and lifestyle factors, and BMI (β [95% CI] per 1-serving-greater whole-grain intake: -0.009 mmol/l glucose [-0.013 to -0.005], P < 0.0001 and -0.011 pmol/l [ln] insulin [-0.015 to -0.007], P = 0.0003). No interactions met our multiple testing-adjusted statistical significance threshold. The strongest SNP interaction with whole-grain intake was rs780094 (GCKR) for fasting insulin (P = 0.006), where greater whole-grain intake was associated with a smaller reduction in fasting insulin concentrations in those with the insulin-raising allele. Our results support the favorable association of whole-grain intake with fasting glucose and insulin and suggest a potential interaction between variation in GCKR and whole-grain intake in influencing fasting insulin concentrations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estimation of whole-grain (WG) food intake in epidemiological and nutritional studies is normally based on general diet FFQ, which are not designed to specifically capture WG intake. To estimate WG cereal intake, we developed a forty-three-item FFQ focused on cereal product intake over the past month. We validated this questionnaire against a 3-d-weighed food record (3DWFR) in thirty-one subjects living in the French-speaking part of Switzerland (nineteen female and twelve male). Subjects completed the FFQ on day 1 (FFQ1), the 3DWFR between days 2 and 13 and the FFQ again on day 14 (FFQ2). The subjects provided a fasting blood sample within 1 week of FFQ2. Total cereal intake, total WG intake, intake of individual cereals, intake of different groups of cereal products and alkylresorcinol (AR) intake were calculated from both FFQ and the 3DWFR. Plasma AR, possible biomarkers for WG wheat and rye intake were also analysed. The total WG intake for the 3DWFR, FFQ1, FFQ2 was 26 (sd 22), 28 (sd 25) and 21 (sd 16) g/d, respectively. Mean plasma AR concentration was 55.8 (sd 26.8) nmol/l. FFQ1, FFQ2 and plasma AR were correlated with the 3DWFR (r 0.72, 0.81 and 0.57, respectively). Adjustment for age, sex, BMI and total energy intake did not affect the results. This FFQ appears to give a rapid and adequate estimate of WG cereal intake in free-living subjects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epidemiological studies have shown an inverse association between dietary intake of whole grains and the risk of chronic disease. This may be related to the ability to mediate a prebiotic modulation of gut microbiota. However, no studies have been conducted on the microbiota modulatory capability of whole-grain (WG) cereals. In the present study, the impact of WG wheat on the human intestinal microbiota compared to wheat bran (WB) was determined. A double-blind, randomised, crossover study was carried out in thirty-one volunteers who were randomised into two groups and consumed daily 48g breakfast cereals, either WG or WB, in two 3-week study periods, separated by a 2-week washout period. Numbers of faecal bifidobacteria and lactobacilli (the target genera for prebiotic intake), were significantly higher upon WG ingestion compared with WB. Ingestion of both breakfast cereals resulted in a significant increase in ferulic acid concentrations in blood but no discernible difference in faeces or urine. No significant differences in faecal SCFA, fasting blood glucose, insulin, total cholesterol (TC), TAG or HDL-cholesterol were observed upon ingestion of WG compared with WB. However, a significant reduction in TC was observed in volunteers in the top quartile of TC concentrations upon ingestion of either cereal. No adverse intestinal symptoms were reported and WB ingestion increased stool frequency. Daily consumption of WG wheat exerted a pronounced prebiotic effect on the human gut microbiota composition. This prebiotic activity may contribute towards the beneficial physiological effects of WG wheat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Population studies have shown a positive correlation between diets rich in whole grains and a reduced risk of developing metabolic diseases, like diabetes, cardiovascular disease, and certain cancers. However, little is known about the mechanisms of action, particularly the impact different fermentable components of whole grains have on the human intestinal microbiota. The modulation of microbial populations by whole grain wheat flakes and the effects of toasting on digestion and subsequent fermentation profile were evaluated. Raw, partially toasted, and toasted wheat flakes were digested using simulated gastric and small intestinal conditions and then fermented using 24-hour, pH-controlled, anaerobic batch cultures inoculated with human feces. Major bacterial groups and production of short-chain fatty acids were compared with those for the prebiotic oligofructose and weakly fermented cellulose. Within treatments, a significant increase (P<.05) in bifidobacteria numbers was observed upon fermentation of all test carbohydrates, with the exception of cellulose. Toasting appeared to have an effect on growth of lactobacilli as only fermentation of raw wheat flakes resulted in a significant increase in levels of this group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Whole grain (WG) foods have been suggested to reduce the risk of cardiovascular disease, but studies are inconsistent and effects on cardiovascular risk markers are not clear. Objective The objective of this study was to assess the impact of increasing WG consumption to at least 80 g/d on overall dietary intake, body composition, blood pressure (BP), blood lipids, blood glucose, gastrointestinal microbiology and gastrointestinal symptoms in healthy, middle-age adults with habitual WG intake < 24 g/d. The trial was registered as ISRCTN36521837. Methods Eligible subjects (12 men, 21 women, aged 40-65 y and BMI 20-35 kg/m2) were identified using food frequency questionnaires and subsequently completed 3-day food diaries (3DFD) to confirm habitual WG consumption. Subjects consumed diets high in WG (> 80 g/d) or low in WG (< 16 g/d, refined grain [RG] diet) in a crossover study, with 6-week intervention periods, separated by a 4-week washout. Adherence was achieved by specific dietary advice and provision of a range of cereal food products. The 3DFD, diet compliance diaries and plasma alkylresorcinols (ARs) were used to verify compliance. Results On the WG intervention, consumption increased from 28 g/d to 168 g/d (P < 0.001), accompanied by an increase in plasma ARs (P < 0.001) and total fiber intake (P < 0.001), without any effect on energy or other macronutrients. While there were no effects on studied parameters, there were trends towards increased 24 h fecal weight (P = 0.08) and reduction in body weight (P = 0.10) and BMI (P = 0.08) during the WG compared to the RG period. Conclusion A combination of dietary advice and provision of commercially available food items enabled subjects with a low-moderate habitual consumption of WG to substantially increase their WG intake, but there was little effect on blood biochemical parameters, body composition, BP, fecal measurements or gut microbiology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective To examine the relationship between intake of whole grains and BMI Z-score in rural children.

Design General linear models and logistic regression were used to examine the cross-sectional associations between whole grain intake and BMI Z-score, prevalence and odds ratios of overweight and obesity. Dietary intake was assessed using the Block Food Screener for ages 2–17 years. Children were classified into three categories according to servings of whole grain intake: <1·0 serving/d, 1·0–1·5 servings/d and >1·5 servings/d.

Setting The CHANGE (Creating Healthy, Active and Nurturing Growing-up Environments) study, an obesity prevention intervention in elementary schools in eight rural US communities in California, Mississippi, Kentucky and South Carolina.

Subjects Seven hundred and ninety-two children attending 3rd–6th grade.

Results After adjusting for age, sex, race/ethnicity, physical activity and state of residence, whole grain intake was inversely associated with BMI Z-score (0·90 v. 0·61 in the lowest v. the highest whole grain intake category; P trend = 0·01). Children who consumed >1·5 servings of whole grains/d had a 40 % lower risk of being obese (OR = 0·60; 95 % CI 0·38, 0·95, P = 0·02) compared with children who consumed <1·0 serving/d. Further adjustment for potential dietary predictors of body weight (fruit, vegetable and dairy intakes) did not change the observed associations.

Conclusions Increasing the intake of whole grains as part of an overall healthy lifestyle may be beneficial for children to achieve and maintain a healthy weight.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed at evaluating the effect of total replacement of dry corn by wet grain corn silage (WGCS) in the feed of label broilers older than 28 days of age on performance, mortality, carcass, parts, breast meat and thighs meat yields, and meat quality. A mixed-sex flock of 448 ISA S 757-N (naked-neck ISA JA Label) day-old chicks was randomly distributed in to randomized block experimental design with four treatments (T1 - with no WGCS; T2 - WGCS between 28 and 83 days; T3 - WGCS between 42 and 83 days; and T4 - WGCS between 63 and 83 days) and four replicates of 28 birds each. Birds were raised under the same management and feeding conditions until 28 days of age, when they started to have free access to paddock with pasture (at least 3m²/bird) and to be fed the experimental diets. Feed and water were offered ad libitum throughout the rearing period, which was divided in three stages: starter (1 to 28 days), grower (29 to 63 days), and finisher (64 to 83 days) according to the feeding schedule. During the short periods of WGCS use (group T2 during grower stage and T4 during the finisher stage), performance and mortality results were similar as to those of the control group (T1). At the end of the experiment, it was observed that the extended use of WGCS (T2 and T3) determined a negative effect on feed conversion ratio. However, the best results of breast meat yield were observed with birds fed WGCS since 28 days (T2). It was concluded that WGCS can replace dry corn grain for short periods during the grower and finisher stages with no impairment of meat quality and yield in slow growth broilers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Incorporation of fiber in cereals may lead to quality issues, thus decreasing consumer acceptance. This is partially due to deterioration of the microstructure, one of the primary quality attributes of cereals. The objective of this study was to better understand the mechanisms by which dietary fibers affect the quality of cereal products during extrusioncooking. The study quantified the effect of amount and type of fiber and whole grain on (i) texture, (ii) structure, and (iii) rehydration properties of extruded cereals. New innovative methods were applied and combined with traditional techniques to characterize both the structure and the rehydration properties. Extruded cereals were produced using a starch-based recipe (whole and wheat flours) and two sources of fibers (oat bran concentrate and wheat bran). The oat and wheat bran levels used in this study were 0, 10, and 20%. The different mixtures were extruded in a pilot twinscrew extruder BC21 (Clextral) and then sugar coated after drying. Mechanical properties of extruded cereals were investigated by compression test. The cellular structure was observed by X-ray tomography. The quality of coating (thickness, homogeneity) was analyzed by optical coherence tomography. The rehydration properties of such cereals in milk were evaluated by magnetic resonance imaging and optical coherence tomography. This work revealed that structure assessment of extruded cereals may lead to a better understanding of the effect of fiber addition on texture and rehydration properties. The application of innovative methods, such as optical coherence tomography and magnetic resonance imaging, was found to be useful to quantify the structural properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research was carried out to verify the ability of laying hens to select food in order to meet their requirements for protein and energy. Ninety-six Hy-Line White laying hens, 45 weeks old, were allotted to a randomized block design with two blocks (two ranges of body weight), four treatments, and three replicates of four hens in each block. The treatments consisted of four different feeding systems: I-Conventional feeding represented by a complete ration composed of 60% ground corn and 40% protein concentrate; 2-Free-choice feeding with ground corn, protein concentrate and oyster shells fed in feeders with three separate compartments; 3-Semi free-choice feeding with whole corn grain, protein concentrate and oyster shells in the same proportion in one feeder; 4-Free-choice feeding with whole corn grain, protein concentrate and oyster shells fed in feeders with three separate compartments. The results indicated that the hens, in spite of age, adapt to different feeding systems, and that they can select feed to meet their nutrient requirements. The semi free-choice and free-choice feeding systems with whole corn grain resulted in the same performance compared to conventional feeding, but shell quality was not improved by oyster shell supplementation. However, the worst performance was with free-choice feeding with ground corn, which indicated that in the free-choice feeding system the use of whole corn grain is recommended.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epidemiological studies and healthy eating guidelines suggest a positive correlation between ingestion of whole grain cereal and food rich in fibre with protection from chronic diseases. The prebiotic potential of whole grains may be related, however, little is known about the microbiota modulatory capability of oat grain or the impact processing has on this ability. In this study the fermentation profile of whole grain oat flakes, processed to produce two different sized flakes (small and large), by human faecal microbiota was investigated in vitro. Simulated digestion and subsequent fermentation by gut bacteria was investigated using pH controlled faecal batch cultures inoculated with human faecal slurry. The different sized oat flakes, Oat 23’s (0.53–0.63 mm) and Oat 25’s/26’s (0.85–1.0 mm) were compared to oligofructose, a confirmed prebiotic, and cellulose, a poorly fermented carbohydrate. Bacterial enumeration was carried out using the culture independent technique, fluorescent in situ hybridisation, and short chain fatty acid (SCFA) production monitored by gas chromatography. Significant changes in total bacterial populations were observed after 24 h incubation for all substrates except Oat 23’s and cellulose. Oats 23’s fermentation resulted in a significant increase in the Bacteroides–Prevotella group. Oligofructose and Oats 25’s/26’s produced significant increases in Bifidobacterium in the latter stages of fermentation while numbers declined for Oats 23’s between 5 h and 24 h. This is possibly due to the smaller surface area of the larger flakes inhibiting the simulated digestion, which may have resulted in increased levels of resistant starch (Bifidobacterium are known to ferment this dietary fibre). Fermentation of Oat 25’s/26’s resulted in a propionate rich SCFA profile and a significant increase in butyrate, which have both been linked to benefiting host health. The smaller sized oats did not produce a significant increase in butyrate concentration. This study shows for the first time the impact of oat grain on the microbial ecology of the human gut and its potential to beneficially modulate the gut microbiota through increasing Bifidobacterium population.