926 resultados para weak instrument
Resumo:
Recent work shows that a low correlation between the instruments and the included variables leads to serious inference problems. We extend the local-to-zero analysis of models with weak instruments to models with estimated instruments and regressors and with higher-order dependence between instruments and disturbances. This makes this framework applicable to linear models with expectation variables that are estimated non-parametrically. Two examples of such models are the risk-return trade-off in finance and the impact of inflation uncertainty on real economic activity. Results show that inference based on Lagrange Multiplier (LM) tests is more robust to weak instruments than Wald-based inference. Using LM confidence intervals leads us to conclude that no statistically significant risk premium is present in returns on the S&P 500 index, excess holding yields between 6-month and 3-month Treasury bills, or in yen-dollar spot returns.
Resumo:
It is well known that standard asymptotic theory is not valid or is extremely unreliable in models with identification problems or weak instruments [Dufour (1997, Econometrica), Staiger and Stock (1997, Econometrica), Wang and Zivot (1998, Econometrica), Stock and Wright (2000, Econometrica), Dufour and Jasiak (2001, International Economic Review)]. One possible way out consists here in using a variant of the Anderson-Rubin (1949, Ann. Math. Stat.) procedure. The latter, however, allows one to build exact tests and confidence sets only for the full vector of the coefficients of the endogenous explanatory variables in a structural equation, which in general does not allow for individual coefficients. This problem may in principle be overcome by using projection techniques [Dufour (1997, Econometrica), Dufour and Jasiak (2001, International Economic Review)]. AR-types are emphasized because they are robust to both weak instruments and instrument exclusion. However, these techniques can be implemented only by using costly numerical techniques. In this paper, we provide a complete analytic solution to the problem of building projection-based confidence sets from Anderson-Rubin-type confidence sets. The latter involves the geometric properties of “quadrics” and can be viewed as an extension of usual confidence intervals and ellipsoids. Only least squares techniques are required for building the confidence intervals. We also study by simulation how “conservative” projection-based confidence sets are. Finally, we illustrate the methods proposed by applying them to three different examples: the relationship between trade and growth in a cross-section of countries, returns to education, and a study of production functions in the U.S. economy.
Resumo:
We discuss statistical inference problems associated with identification and testability in econometrics, and we emphasize the common nature of the two issues. After reviewing the relevant statistical notions, we consider in turn inference in nonparametric models and recent developments on weakly identified models (or weak instruments). We point out that many hypotheses, for which test procedures are commonly proposed, are not testable at all, while some frequently used econometric methods are fundamentally inappropriate for the models considered. Such situations lead to ill-defined statistical problems and are often associated with a misguided use of asymptotic distributional results. Concerning nonparametric hypotheses, we discuss three basic problems for which such difficulties occur: (1) testing a mean (or a moment) under (too) weak distributional assumptions; (2) inference under heteroskedasticity of unknown form; (3) inference in dynamic models with an unlimited number of parameters. Concerning weakly identified models, we stress that valid inference should be based on proper pivotal functions —a condition not satisfied by standard Wald-type methods based on standard errors — and we discuss recent developments in this field, mainly from the viewpoint of building valid tests and confidence sets. The techniques discussed include alternative proposed statistics, bounds, projection, split-sampling, conditioning, Monte Carlo tests. The possibility of deriving a finite-sample distributional theory, robustness to the presence of weak instruments, and robustness to the specification of a model for endogenous explanatory variables are stressed as important criteria assessing alternative procedures.
Resumo:
This paper attempts an empirical assessment of the incentive effects of plant variety protection regimes in the generation of crop variety innovations. A duration model of plant variety protection certificates is used to infer the private appropriability of returns from agricultural crop variety innovations in the UK over the period 1965-2000. The results suggest that plant variety protection provides only modest appropriability of returns to innovators of agricultural crop varieties. The value distribution of plant variety protection certificates is highly skewed with a large proportion of innovations providing virtually no returns to innovators. Increasing competition from newer varieties appears to have accelerated the turnover of varieties reducing appropriability further. Plant variety protection emerges as a relatively weak instrument of protection.
Resumo:
La dernière décennie a connu un intérêt croissant pour les problèmes posés par les variables instrumentales faibles dans la littérature économétrique, c’est-à-dire les situations où les variables instrumentales sont faiblement corrélées avec la variable à instrumenter. En effet, il est bien connu que lorsque les instruments sont faibles, les distributions des statistiques de Student, de Wald, du ratio de vraisemblance et du multiplicateur de Lagrange ne sont plus standard et dépendent souvent de paramètres de nuisance. Plusieurs études empiriques portant notamment sur les modèles de rendements à l’éducation [Angrist et Krueger (1991, 1995), Angrist et al. (1999), Bound et al. (1995), Dufour et Taamouti (2007)] et d’évaluation des actifs financiers (C-CAPM) [Hansen et Singleton (1982,1983), Stock et Wright (2000)], où les variables instrumentales sont faiblement corrélées avec la variable à instrumenter, ont montré que l’utilisation de ces statistiques conduit souvent à des résultats peu fiables. Un remède à ce problème est l’utilisation de tests robustes à l’identification [Anderson et Rubin (1949), Moreira (2002), Kleibergen (2003), Dufour et Taamouti (2007)]. Cependant, il n’existe aucune littérature économétrique sur la qualité des procédures robustes à l’identification lorsque les instruments disponibles sont endogènes ou à la fois endogènes et faibles. Cela soulève la question de savoir ce qui arrive aux procédures d’inférence robustes à l’identification lorsque certaines variables instrumentales supposées exogènes ne le sont pas effectivement. Plus précisément, qu’arrive-t-il si une variable instrumentale invalide est ajoutée à un ensemble d’instruments valides? Ces procédures se comportent-elles différemment? Et si l’endogénéité des variables instrumentales pose des difficultés majeures à l’inférence statistique, peut-on proposer des procédures de tests qui sélectionnent les instruments lorsqu’ils sont à la fois forts et valides? Est-il possible de proposer les proédures de sélection d’instruments qui demeurent valides même en présence d’identification faible? Cette thèse se focalise sur les modèles structurels (modèles à équations simultanées) et apporte des réponses à ces questions à travers quatre essais. Le premier essai est publié dans Journal of Statistical Planning and Inference 138 (2008) 2649 – 2661. Dans cet essai, nous analysons les effets de l’endogénéité des instruments sur deux statistiques de test robustes à l’identification: la statistique d’Anderson et Rubin (AR, 1949) et la statistique de Kleibergen (K, 2003), avec ou sans instruments faibles. D’abord, lorsque le paramètre qui contrôle l’endogénéité des instruments est fixe (ne dépend pas de la taille de l’échantillon), nous montrons que toutes ces procédures sont en général convergentes contre la présence d’instruments invalides (c’est-à-dire détectent la présence d’instruments invalides) indépendamment de leur qualité (forts ou faibles). Nous décrivons aussi des cas où cette convergence peut ne pas tenir, mais la distribution asymptotique est modifiée d’une manière qui pourrait conduire à des distorsions de niveau même pour de grands échantillons. Ceci inclut, en particulier, les cas où l’estimateur des double moindres carrés demeure convergent, mais les tests sont asymptotiquement invalides. Ensuite, lorsque les instruments sont localement exogènes (c’est-à-dire le paramètre d’endogénéité converge vers zéro lorsque la taille de l’échantillon augmente), nous montrons que ces tests convergent vers des distributions chi-carré non centrées, que les instruments soient forts ou faibles. Nous caractérisons aussi les situations où le paramètre de non centralité est nul et la distribution asymptotique des statistiques demeure la même que dans le cas des instruments valides (malgré la présence des instruments invalides). Le deuxième essai étudie l’impact des instruments faibles sur les tests de spécification du type Durbin-Wu-Hausman (DWH) ainsi que le test de Revankar et Hartley (1973). Nous proposons une analyse en petit et grand échantillon de la distribution de ces tests sous l’hypothèse nulle (niveau) et l’alternative (puissance), incluant les cas où l’identification est déficiente ou faible (instruments faibles). Notre analyse en petit échantillon founit plusieurs perspectives ainsi que des extensions des précédentes procédures. En effet, la caractérisation de la distribution de ces statistiques en petit échantillon permet la construction des tests de Monte Carlo exacts pour l’exogénéité même avec les erreurs non Gaussiens. Nous montrons que ces tests sont typiquement robustes aux intruments faibles (le niveau est contrôlé). De plus, nous fournissons une caractérisation de la puissance des tests, qui exhibe clairement les facteurs qui déterminent la puissance. Nous montrons que les tests n’ont pas de puissance lorsque tous les instruments sont faibles [similaire à Guggenberger(2008)]. Cependant, la puissance existe tant qu’au moins un seul instruments est fort. La conclusion de Guggenberger (2008) concerne le cas où tous les instruments sont faibles (un cas d’intérêt mineur en pratique). Notre théorie asymptotique sous les hypothèses affaiblies confirme la théorie en échantillon fini. Par ailleurs, nous présentons une analyse de Monte Carlo indiquant que: (1) l’estimateur des moindres carrés ordinaires est plus efficace que celui des doubles moindres carrés lorsque les instruments sont faibles et l’endogenéité modérée [conclusion similaire à celle de Kiviet and Niemczyk (2007)]; (2) les estimateurs pré-test basés sur les tests d’exogenété ont une excellente performance par rapport aux doubles moindres carrés. Ceci suggère que la méthode des variables instrumentales ne devrait être appliquée que si l’on a la certitude d’avoir des instruments forts. Donc, les conclusions de Guggenberger (2008) sont mitigées et pourraient être trompeuses. Nous illustrons nos résultats théoriques à travers des expériences de simulation et deux applications empiriques: la relation entre le taux d’ouverture et la croissance économique et le problème bien connu du rendement à l’éducation. Le troisième essai étend le test d’exogénéité du type Wald proposé par Dufour (1987) aux cas où les erreurs de la régression ont une distribution non-normale. Nous proposons une nouvelle version du précédent test qui est valide même en présence d’erreurs non-Gaussiens. Contrairement aux procédures de test d’exogénéité usuelles (tests de Durbin-Wu-Hausman et de Rvankar- Hartley), le test de Wald permet de résoudre un problème courant dans les travaux empiriques qui consiste à tester l’exogénéité partielle d’un sous ensemble de variables. Nous proposons deux nouveaux estimateurs pré-test basés sur le test de Wald qui performent mieux (en terme d’erreur quadratique moyenne) que l’estimateur IV usuel lorsque les variables instrumentales sont faibles et l’endogénéité modérée. Nous montrons également que ce test peut servir de procédure de sélection de variables instrumentales. Nous illustrons les résultats théoriques par deux applications empiriques: le modèle bien connu d’équation du salaire [Angist et Krueger (1991, 1999)] et les rendements d’échelle [Nerlove (1963)]. Nos résultats suggèrent que l’éducation de la mère expliquerait le décrochage de son fils, que l’output est une variable endogène dans l’estimation du coût de la firme et que le prix du fuel en est un instrument valide pour l’output. Le quatrième essai résout deux problèmes très importants dans la littérature économétrique. D’abord, bien que le test de Wald initial ou étendu permette de construire les régions de confiance et de tester les restrictions linéaires sur les covariances, il suppose que les paramètres du modèle sont identifiés. Lorsque l’identification est faible (instruments faiblement corrélés avec la variable à instrumenter), ce test n’est en général plus valide. Cet essai développe une procédure d’inférence robuste à l’identification (instruments faibles) qui permet de construire des régions de confiance pour la matrices de covariances entre les erreurs de la régression et les variables explicatives (possiblement endogènes). Nous fournissons les expressions analytiques des régions de confiance et caractérisons les conditions nécessaires et suffisantes sous lesquelles ils sont bornés. La procédure proposée demeure valide même pour de petits échantillons et elle est aussi asymptotiquement robuste à l’hétéroscédasticité et l’autocorrélation des erreurs. Ensuite, les résultats sont utilisés pour développer les tests d’exogénéité partielle robustes à l’identification. Les simulations Monte Carlo indiquent que ces tests contrôlent le niveau et ont de la puissance même si les instruments sont faibles. Ceci nous permet de proposer une procédure valide de sélection de variables instrumentales même s’il y a un problème d’identification. La procédure de sélection des instruments est basée sur deux nouveaux estimateurs pré-test qui combinent l’estimateur IV usuel et les estimateurs IV partiels. Nos simulations montrent que: (1) tout comme l’estimateur des moindres carrés ordinaires, les estimateurs IV partiels sont plus efficaces que l’estimateur IV usuel lorsque les instruments sont faibles et l’endogénéité modérée; (2) les estimateurs pré-test ont globalement une excellente performance comparés à l’estimateur IV usuel. Nous illustrons nos résultats théoriques par deux applications empiriques: la relation entre le taux d’ouverture et la croissance économique et le modèle de rendements à l’éducation. Dans la première application, les études antérieures ont conclu que les instruments n’étaient pas trop faibles [Dufour et Taamouti (2007)] alors qu’ils le sont fortement dans la seconde [Bound (1995), Doko et Dufour (2009)]. Conformément à nos résultats théoriques, nous trouvons les régions de confiance non bornées pour la covariance dans le cas où les instruments sont assez faibles.
Resumo:
The Multidimensional Loss Scale: Initial Development and Psychometric Evaluation The Multidimensional Loss Scale (MLS) represents the first instrument designed specifically to measure loss in refugee populations. Researchers developed initial items of the Multidimensional Loss Scale to assess Experience of Loss Events and Loss Distress in a culturally sensitive manner across multiple domains (social, material, intra-personal and cultural). A sample of 70 recently settled Burmese adult refugees completed a battery of questionnaires, including new scale items. Analyses explored the scale’s factor structure, internal consistency, convergent validity and divergent validity. Principal Axis Factoring supported a five-factor model: Loss of Symbolic Self, Loss of Interdependence, Loss of Home, Interpersonal Loss, and Loss of Intrapersonal Integrity. Chronbach’s Alphas indicated satisfactory internal consistency for Experience of Loss Events (.85) and Loss Distress (.92). Convergent and divergent validity of Loss Distress were supported by moderate correlations with interpersonal grief and trauma symptoms and weak correlations with depression and anxiety. The new scale was well received by people from refugee backgrounds and shows promise for application in future research and practice
Resumo:
This is a note about proxy variables and instruments for identification of structural parameters in regression models. We have experienced that in the econometric textbooks these two issues are treated separately, although in practice these two concepts are very often combined. Usually, proxy variables are inserted in instrument variable regressions with the motivation they are exogenous. Implicitly meaning they are exogenous in a reduced form model and not in a structural model. Actually if these variables are exogenous they should be redundant in the structural model, e.g. IQ as a proxy for ability. Valid proxies reduce unexplained variation and increases the efficiency of the estimator of the structural parameter of interest. This is especially important in situations when the instrument is weak. With a simple example we demonstrate what is required of a proxy and an instrument when they are combined. It turns out that when a researcher has a valid instrument the requirements on the proxy variable is weaker than if no such instrument exists
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Weak lensing experiments such as the future ESA-accepted mission Euclid aim to measure cosmological parameters with unprecedented accuracy. It is important to assess the precision that can be obtained in these measurements by applying analysis software on mock images that contain many sources of noise present in the real data. In this Thesis, we show a method to perform simulations of observations, that produce realistic images of the sky according to characteristics of the instrument and of the survey. We then use these images to test the performances of the Euclid mission. In particular, we concentrate on the precision of the photometric redshift measurements, which are key data to perform cosmic shear tomography. We calculate the fraction of the total observed sample that must be discarded to reach the required level of precision, that is equal to 0.05(1+z) for a galaxy with measured redshift z, with different ancillary ground-based observations. The results highlight the importance of u-band observations, especially to discriminate between low (z < 0.5) and high (z ~ 3) redshifts, and the need for good observing sites, with seeing FWHM < 1. arcsec. We then construct an optimal filter to detect galaxy clusters through photometric catalogues of galaxies, and we test it on the COSMOS field, obtaining 27 lensing-confirmed detections. Applying this algorithm on mock Euclid data, we verify the possibility to detect clusters with mass above 10^14.2 solar masses with a low rate of false detections.
Resumo:
We report on a new measurement of the neutron beta-asymmetry parameter A with the instrument \perkeo. Main advancements are the high neutron polarization of P=99.7(1) from a novel arrangement of super mirror polarizers and reduced background from improvements in beam line and shielding. Leading corrections were thus reduced by a factor of 4, pushing them below the level of statistical error and resulting in a significant reduction of systematic uncertainty compared to our previous experiments. From the result A0=−0.11996(58), we derive the ratio of the axial-vector to the vector coupling constant λ=gA/gV=−1.2767(16)
Resumo:
The goal of this paper is to revisit the influential work of Mauro [1995] focusing on the strength of his results under weak identification. He finds a negative impact of corruption on investment and economic growth that appears to be robust to endogeneity when using two-stage least squares (2SLS). Since the inception of Mauro [1995], much literature has focused on 2SLS methods revealing the dangers of estimation and thus inference under weak identification. We reproduce the original results of Mauro [1995] with a high level of confidence and show that the instrument used in the original work is in fact 'weak' as defined by Staiger and Stock [1997]. Thus we update the analysis using a test statistic robust to weak instruments. Our results suggest that under Mauro's original model there is a high probability that the parameters of interest are locally almost unidentified in multivariate specifications. To address this problem, we also investigate other instruments commonly used in the corruption literature and obtain similar results.
Resumo:
The purpose of this study was to (a) develop an evaluation instrument capable of rating students' perceptions of the instructional quality of an online course and the instructor’s performance, and (b) validate the proposed instrument with a study conducted at a major public university. The instrument was based upon the Seven Principles of Good Practice for Undergraduate Education (Chickering & Gamson, 1987). The study examined four specific questions. 1. Is the underlying factor structure of the new instrument consistent with Chickering and Gamson's Seven Principles? 2. Is the factor structure of the new instrument invariant for male and female students? 3. Are the scores on the new instrument related students’ expected grades? 4. Are the scores on the new instrument related to the students' perceived course workload? ^ The instrument was designed to measure students’ levels of satisfaction with their instruction, and also gathered information concerning the students’ sex, the expected grade in the course, and the students’ perceptions of the amount of work required by the course. A cluster sample consisting of an array of online courses across the disciplines yielded a total 297 students who responded to the online survey. The students for each course selected were asked to rate their instructors with the newly developed instrument. ^ Question 1 was answered using exploratory factor analysis, and yielded a factor structure similar to the Seven Principles.^ Question 2 was answered by separately factor-analyzing the responses of male and female students and comparing the factor structures. The resulting factor structures for men and women were different. However, 14 items could be realigned under five factors that paralleled some of the Seven Principles. When the scores of only those 14 items were entered in two principal components factor analyses using only men and only women, respectively and restricting the factor structure to five factors, the factor structures were the same for men and women.^ A weak positive relationship between students’ expected grades and their scores on the instrument was found (Question 3). There was no relationship between students’ perceived workloads for the course and their scores on the instrument (Question 4).^
Resumo:
É incontornável o estatuto que o conceito de qualidade de vida assume hoje na prática e políticas de saúde pública. Na infância e adolescência é ainda escassa a investigação, tornando-se crucial o desenvolvimento de instrumentos de qualidade vida relacionada com a saúde validados para esta população. O presente trabalho tem como objetivo fundamental analisar as qualidades psicométricas e validar a versão portuguesa do Youth Quality of Life (YQOL-R) (Patrick, et al., 2002). A amostra é constituída por 507 adolescentes, com idades compreendidas entre os 12 e os 19 anos, a frequentar o 3º ciclo do ensino básio e ensino secundário de escolas públicas do ensino regular. Para além do citado instrumento a validar, os jovens preencheram também, para a análise da validade convergente e divergente, o Kidscreen-27 (Gaspar & Matos, 2008) e a Escala da Depressão, Ansiedade e Stresse (EADS-21) (Pais-Ribeiro, Honrado & Leal, 2004). Os resultados mostram que o YQOL-R apresenta uma estrutura fatorial de quatro fatores, semelhantes à versão original americana (individual, relações sociais, ambiente e qualidade de vida em geral). Possui uma boa consistência interna e uma adequada estabilidade temporal. Mostrou correlações significativas e no sentido esperado com as variáveis em estudo. Foram igualmente encontradas diferenças de género em relação à qualidade de vida, sendo os rapazes a reportarem em média níveis mais elevados de perceção da qualidade de vida, comparativamente às raparigas. Futuros estudos devem ser realizados em amostras clínicas para confirmação dos dados. Não obstante esta limitação, o presente estudo contribuiu para a disponibilização de um novo instrumento para avaliação da qualidade de vida em crianças e adolescentes, o qual evidenciou boas propriedade psicométricas, apoiando, assim empiricamente, a sua utilização nas práticas de saúde e investigação em amostras da comunidade. / Nowadays, it´s unavoidable the status that, the concept of quality of life assumes in practices and politics of public health. In childhood and adolescence it´s weak the investigation but it´s crucial the development of instruments of quality of life related to health validated to this population. The present work has an important aim, it´s analyze the psychometric qualities and validate the Portuguese version of Youth Quality of Life (YQOL-R) (Patrick, et al., 2002). The sample consists of 507 adolescents, aged between 12 and 19 years old and they attend the 3 rd cycle of basic education and secondary education schools in villages of regular education. Apart from that instrument, teenagers fill in, also, to the analysis convergent and divergent, the Kidscreen-27 (Gaspar & Matos, 2008) and the Depression, Anxiety and Stress Scale (EADS-21) (Pais-Ribeiro, Honrado & Leal, 2004). The results show that the YQOL-R presents a factorial structure with four factors similar to original American version (individual, social relations, environment and general quality of life), presenting a good internal consistence and an adequate temporal stability. Substantial correlations showed and in the expected way with the variables in study. Have been found differences of gender related to quality of life, boys reported on average higher levels of quality of life perception, comparatively to the girls. Future studies must be performed in clinical samples to confirm the findings. In spite of this restriction, the actual study contributes to providing a new instrument to evaluate the quality of life in children and adolescents, this evidenced good psychometric properties, supported empirically its application in heath practices and investigation in community samples.