885 resultados para wavelet entropy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wavelet entropy assesses the degree of order or disorder in signals and presents this complex information in a simple metric. Relative wavelet entropy assesses the similarity between the spectral distributions of two signals, again in a simple metric. Wavelet entropy is therefore potentially a very attractive tool for waveform analysis. The ability of this method to track the effects of pharmacologic modulation of vascular function on Doppler blood velocity waveforms was assessed. Waveforms were captured from ophthalmic arteries of 10 healthy subjects at baseline, after the administration of glyceryl trinitrate (GTN) and after two doses of N(G)-nitro-L-arginine-methyl ester (L-NAME) to produce vasodilation and vasoconstriction, respectively. Wavelet entropy had a tendency to decrease from baseline in response to GTN, but significantly increased after the administration of L-NAME (mean: 1.60 ± 0.07 after 0.25 mg/kg and 1.72 ± 0.13 after 0.5 mg/kg vs. 1.50 ± 0.10 at baseline, p < 0.05). Relative wavelet entropy had a spectral distribution from increasing doses of L-NAME comparable to baseline, 0.07 ± 0.04 and 0.08 ± 0.03, respectively, whereas GTN had the most dissimilar spectral distribution compared with baseline (0.17 ± 0.08, p = 0.002). Wavelet entropy can detect subtle changes in Doppler blood velocity waveform structure in response to nitric-oxide-mediated changes in arteriolar smooth muscle tone.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: The identification of pre-clinical microvascular damage in hypertension by non-invasive techniques has proved frustrating for clinicians. This proof of concept study investigated whether entropy, a novel summary measure for characterizing blood velocity waveforms, is altered in participants with hypertension and may therefore be useful in risk stratification.

Methods: Doppler ultrasound waveforms were obtained from the carotid and retrobulbar circulation in 42 participants with uncomplicated grade 1 hypertension (mean systolic/diastolic blood pressure (BP) 142/92 mmHg), and 26 healthy controls (mean systolic/diastolic BP 116/69 mmHg). Mean wavelet entropy was derived from flow-velocity data and compared with traditional haemodynamic measures of microvascular function, namely the resistive and pulsatility indices.

Results: Entropy, was significantly higher in control participants in the central retinal artery (CRA) (differential mean 0.11 (standard error 0.05 cms(-1)), CI 0.009 to 0.219, p 0.017) and ophthalmic artery (0.12 (0.05), CI 0.004 to 0.215, p 0.04). In comparison, the resistive index (0.12 (0.05), CI 0.005 to 0.226, p 0.029) and pulsatility index (0.96 (0.38), CI 0.19 to 1.72, p 0.015) showed significant differences between groups in the CRA alone. Regression analysis indicated that entropy was significantly influenced by age and systolic blood pressure (r values 0.4-0.6). None of the measures were significantly altered in the larger conduit vessel.

Conclusion: This is the first application of entropy to human blood velocity waveform analysis and shows that this new technique has the ability to discriminate health from early hypertensive disease, thereby promoting the early identification of cardiovascular disease in a young hypertensive population.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The grading of crushed aggregate is carried out usually by sieving. We describe a new image-based approach to the automatic grading of such materials. The operational problem addressed is where the camera is located directly over a conveyor belt. Our approach characterizes the information content of each image, taking into account relative variation in the pixel data, and resolution scale. In feature space, we find very good class separation using a multidimensional linear classifier. The innovation in this work includes (i) introducing an effective image-based approach into this application area, and (ii) our supervised classification using wavelet entropy-based features.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main goal of this research is to design an efficient compression al~ gorithm for fingerprint images. The wavelet transform technique is the principal tool used to reduce interpixel redundancies and to obtain a parsimonious representation for these images. A specific fixed decomposition structure is designed to be used by the wavelet packet in order to save on the computation, transmission, and storage costs. This decomposition structure is based on analysis of information packing performance of several decompositions, two-dimensional power spectral density, effect of each frequency band on the reconstructed image, and the human visual sensitivities. This fixed structure is found to provide the "most" suitable representation for fingerprints, according to the chosen criteria. Different compression techniques are used for different subbands, based on their observed statistics. The decision is based on the effect of each subband on the reconstructed image according to the mean square criteria as well as the sensitivities in human vision. To design an efficient quantization algorithm, a precise model for distribution of the wavelet coefficients is developed. The model is based on the generalized Gaussian distribution. A least squares algorithm on a nonlinear function of the distribution model shape parameter is formulated to estimate the model parameters. A noise shaping bit allocation procedure is then used to assign the bit rate among subbands. To obtain high compression ratios, vector quantization is used. In this work, the lattice vector quantization (LVQ) is chosen because of its superior performance over other types of vector quantizers. The structure of a lattice quantizer is determined by its parameters known as truncation level and scaling factor. In lattice-based compression algorithms reported in the literature the lattice structure is commonly predetermined leading to a nonoptimized quantization approach. In this research, a new technique for determining the lattice parameters is proposed. In the lattice structure design, no assumption about the lattice parameters is made and no training and multi-quantizing is required. The design is based on minimizing the quantization distortion by adapting to the statistical characteristics of the source in each subimage. 11 Abstract Abstract Since LVQ is a multidimensional generalization of uniform quantizers, it produces minimum distortion for inputs with uniform distributions. In order to take advantage of the properties of LVQ and its fast implementation, while considering the i.i.d. nonuniform distribution of wavelet coefficients, the piecewise-uniform pyramid LVQ algorithm is proposed. The proposed algorithm quantizes almost all of source vectors without the need to project these on the lattice outermost shell, while it properly maintains a small codebook size. It also resolves the wedge region problem commonly encountered with sharply distributed random sources. These represent some of the drawbacks of the algorithm proposed by Barlaud [26). The proposed algorithm handles all types of lattices, not only the cubic lattices, as opposed to the algorithms developed by Fischer [29) and Jeong [42). Furthermore, no training and multiquantizing (to determine lattice parameters) is required, as opposed to Powell's algorithm [78). For coefficients with high-frequency content, the positive-negative mean algorithm is proposed to improve the resolution of reconstructed images. For coefficients with low-frequency content, a lossless predictive compression scheme is used to preserve the quality of reconstructed images. A method to reduce bit requirements of necessary side information is also introduced. Lossless entropy coding techniques are subsequently used to remove coding redundancy. The algorithms result in high quality reconstructed images with better compression ratios than other available algorithms. To evaluate the proposed algorithms their objective and subjective performance comparisons with other available techniques are presented. The quality of the reconstructed images is important for a reliable identification. Enhancement and feature extraction on the reconstructed images are also investigated in this research. A structural-based feature extraction algorithm is proposed in which the unique properties of fingerprint textures are used to enhance the images and improve the fidelity of their characteristic features. The ridges are extracted from enhanced grey-level foreground areas based on the local ridge dominant directions. The proposed ridge extraction algorithm, properly preserves the natural shape of grey-level ridges as well as precise locations of the features, as opposed to the ridge extraction algorithm in [81). Furthermore, it is fast and operates only on foreground regions, as opposed to the adaptive floating average thresholding process in [68). Spurious features are subsequently eliminated using the proposed post-processing scheme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Age-related macular degeneration (AMD) affects the central vision and subsequently may lead to visual loss in people over 60 years of age. There is no permanent cure for AMD, but early detection and successive treatment may improve the visual acuity. AMD is mainly classified into dry and wet type; however, dry AMD is more common in aging population. AMD is characterized by drusen, yellow pigmentation, and neovascularization. These lesions are examined through visual inspection of retinal fundus images by ophthalmologists. It is laborious, time-consuming, and resource-intensive. Hence, in this study, we have proposed an automated AMD detection system using discrete wavelet transform (DWT) and feature ranking strategies. The first four-order statistical moments (mean, variance, skewness, and kurtosis), energy, entropy, and Gini index-based features are extracted from DWT coefficients. We have used five (t test, Kullback–Lieber Divergence (KLD), Chernoff Bound and Bhattacharyya Distance, receiver operating characteristics curve-based, and Wilcoxon) feature ranking strategies to identify optimal feature set. A set of supervised classifiers namely support vector machine (SVM), decision tree, k -nearest neighbor ( k -NN), Naive Bayes, and probabilistic neural network were used to evaluate the highest performance measure using minimum number of features in classifying normal and dry AMD classes. The proposed framework obtained an average accuracy of 93.70 %, sensitivity of 91.11 %, and specificity of 96.30 % using KLD ranking and SVM classifier. We have also formulated an AMD Risk Index using selected features to classify the normal and dry AMD classes using one number. The proposed system can be used to assist the clinicians and also for mass AMD screening programs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A MATLAB-based computer code has been developed for the simultaneous wavelet analysis and filtering of several environmental time series, particularly focused on the analyses of cave monitoring data. The continuous wavelet transform, the discrete wavelet transform and the discrete wavelet packet transform have been implemented to provide a fast and precise time–period examination of the time series at different period bands. Moreover, statistic methods to examine the relation between two signals have been included. Finally, the entropy of curves and splines based methods have also been developed for segmenting and modeling the analyzed time series. All these methods together provide a user-friendly and fast program for the environmental signal analysis, with useful, practical and understandable results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The contributions of this dissertation are in the development of two new interrelated approaches to video data compression: (1) A level-refined motion estimation and subband compensation method for the effective motion estimation and motion compensation. (2) A shift-invariant sub-decimation decomposition method in order to overcome the deficiency of the decimation process in estimating motion due to its shift-invariant property of wavelet transform. ^ The enormous data generated by digital videos call for an intense need of efficient video compression techniques to conserve storage space and minimize bandwidth utilization. The main idea of video compression is to reduce the interpixel redundancies inside and between the video frames by applying motion estimation and motion compensation (MEMO) in combination with spatial transform coding. To locate the global minimum of the matching criterion function reasonably, hierarchical motion estimation by coarse to fine resolution refinements using discrete wavelet transform is applied due to its intrinsic multiresolution and scalability natures. ^ Due to the fact that most of the energies are concentrated in the low resolution subbands while decreased in the high resolution subbands, a new approach called level-refined motion estimation and subband compensation (LRSC) method is proposed. It realizes the possible intrablocks in the subbands for lower entropy coding while keeping the low computational loads of motion estimation as the level-refined method, thus to achieve both temporal compression quality and computational simplicity. ^ Since circular convolution is applied in wavelet transform to obtain the decomposed subframes without coefficient expansion, symmetric-extended wavelet transform is designed on the finite length frame signals for more accurate motion estimation without discontinuous boundary distortions. ^ Although wavelet transformed coefficients still contain spatial domain information, motion estimation in wavelet domain is not as straightforward as in spatial domain due to the shift variance property of the decimation process of the wavelet transform. A new approach called sub-decimation decomposition method is proposed, which maintains the motion consistency between the original frame and the decomposed subframes, improving as a consequence the wavelet domain video compressions by shift invariant motion estimation and compensation. ^