A machine vision approach to the grading of crushed aggregate


Autoria(s): Crookes, Daniel; Murtagh, Fionn; Qiao, Xiaoyu; Basheer, Muhammed; Long, Adrian; Starck, J.L.; Walsh, Paul
Data(s)

01/09/2005

Resumo

The grading of crushed aggregate is carried out usually by sieving. We describe a new image-based approach to the automatic grading of such materials. The operational problem addressed is where the camera is located directly over a conveyor belt. Our approach characterizes the information content of each image, taking into account relative variation in the pixel data, and resolution scale. In feature space, we find very good class separation using a multidimensional linear classifier. The innovation in this work includes (i) introducing an effective image-based approach into this application area, and (ii) our supervised classification using wavelet entropy-based features.

Identificador

http://pure.qub.ac.uk/portal/en/publications/a-machine-vision-approach-to-the-grading-of-crushed-aggregate(b1614729-a893-4588-8ba0-4187e75b2492).html

http://dx.doi.org/10.1007/s00138-005-0176-7

http://www.scopus.com/inward/record.url?scp=27744554854&partnerID=8YFLogxK

Idioma(s)

eng

Direitos

info:eu-repo/semantics/restrictedAccess

Fonte

Crookes , D , Murtagh , F , Qiao , X , Basheer , M , Long , A , Starck , J L & Walsh , P 2005 , ' A machine vision approach to the grading of crushed aggregate ' Machine Vision and Applications , vol 16(4) , no. 4 , pp. 229-235 . DOI: 10.1007/s00138-005-0176-7

Palavras-Chave #/dk/atira/pure/subjectarea/asjc/2200/2207 #Control and Systems Engineering #/dk/atira/pure/subjectarea/asjc/2200/2208 #Electrical and Electronic Engineering #/dk/atira/pure/subjectarea/asjc/1700/1702 #Artificial Intelligence #/dk/atira/pure/subjectarea/asjc/1700/1709 #Human-Computer Interaction #/dk/atira/pure/subjectarea/asjc/1700/1707 #Computer Vision and Pattern Recognition
Tipo

article