919 resultados para vitamin B-1
Resumo:
Quinones play a vital role in the process of electron transfer in bacterial photosynthetic reaction centers. It is of interest to investigate the photochemical reactions involving quinones with a view to elucidating the structure-function relationships in the biological processes. Resonance Raman spectra of radical anions and the time-resolved resonance Raman spectra of vitamin K-1 (model compound for Q(A) in Rhodopseudomonas viridis, a bacterial photosynthetic reception center) are presented. The photochemical intermediates of vitamin K-1, viz. radical anion, ketyl radical and o-quinone methide have been identified. The vibrational assignments of all these intermediates are made on the basis of comparison with our earlier TR3 studies on radical anions of naphthoquinone and menaquinone. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Iron(III)-Schiff base complexes, namely, Fe(tsc-py)(2)](NO3) (1), Fe(tsc-acpy)(2)](NO3) (2) and Fe(tsc-VB6)(2)](NO3) (3), where tsc-py, tsc-acpy and tsc-VB6 are the respective Schiff bases derived from thiosemicarbazide (tsc) and pyridine-2-aldehyde (tsc-py), 2-acetyl pyridine (tsc-acpy) and vitamin B-6 (pyridoxal, tsc-VB6), have been prepared, structurally characterized and their photocytotoxicity studied in cancer HeLa cells. The single crystal X-ray structures of the complexes 1 and 2 show a distorted octahedral geometry formed by the FeN4S2 core. The low-spin and 1 : 1 electrolytic complexes display a broad absorption band in the visible region. Complexes 1 and 2, without any VB6 moiety are not cytotoxic under light or dark conditions. Complex 3 is significantly photocytotoxic under visible light of 400-700 nm giving an IC50 value of 22.5 mu M in HeLa cells with no dark toxicity (IC50 > 100 mu M). The photo-induced cell death is attributable to apoptotic pathways involving photo-assisted generation of intracellular ROS. The observed photocytotoxicity of complex 3 could be the result of its better photosensitizing property combined with its enhanced uptake into cancer cells via a VB6 transporting membrane carrier (VTC) mediated diffusion pathway due to the presence of the VB6 moiety compared to the two non-vitamin B-6 analogues, complexes 1 and 2.
Resumo:
Distribution of vitamin B-12 in the skeletal muscle of several marine and fresh water fish and marine invertebrates are reported. The vitamin B-12 content of white muscle of various fish ranges between 0.05 and 1.5 micrograms. The elasmobranch fish, such as sharks and rays, has a lower levels of vitamin B-12. The distribution of vitamin B-12 in the red muscle, heart, brain and liver of various fish is also shown. Content in red muscle varies between 3 and 22 micrograms, averaging 8 micrograms. The values show that the heart is a rich source of vitamin B-12. Internal organs are also rich in vitamin B
Resumo:
BACKGROUND: Current data suggest that physiologic doses of vitamin B-6 have no significant homocysteine-lowering effect. It is possible that an effect of vitamin B-6 was missed in previous trials because of a much greater effect of folic acid, vitamin B-12, or both. OBJECTIVE: The aim of this study was to investigate the effect of low-dose vitamin B-6 supplementation on fasting total homocysteine (tHcy) concentrations in healthy elderly persons who were made replete with folate and riboflavin. DESIGN: Twenty-two healthy elderly persons aged 63-80 y were supplemented with a low dose of vitamin B-6 (1.6 mg/d) for 12 wk in a randomized, double-blind, placebo-controlled trial after repletion with folic acid (400 microg/d for 6 wk) and riboflavin (1.6 mg/d for 18 wk); none of the subjects had a vitamin B-12 deficiency. RESULTS: Folic acid supplementation lowered fasting tHcy by 19.6% (P
Resumo:
Folate and vitamin B-6 act in generating methyl groups for homocysteine remethylation, but the kinetic effects of folate or vitamin B-6 deficiency are not known. We used an intravenous primed, constant infusion of stable isotope-labeled serine, methionine, and leucine to investigate one-carbon metabolism in healthy control (n = 5), folate-deficient (n = 4), and vitamin B-6-deficient (n = 5) human subjects. The plasma homocysteine concentration in folate-deficient subjects [15.9 +/-2.1 (SD) mu mol/l] was approximately two times that of control (7.4 +/-1.7 mmol/l) and vitamin B-6-deficient (7.7 +/-2.1 mmol/l) subjects. The rate of methionine synthesis by homocysteine remethylation was depressed (P = 0.027) in folate deficiency but not in vitamin B-6 deficiency. For all subjects, the homocysteine remethylation rate was not significantly associated with plasma homocysteine concentration (r = -0.44, P = 0.12). The fractional synthesis rate of homocysteine from methionine was positively correlated with plasma homocysteine concentration (r = 0.60, P = 0.031), and a model incorporating both homocysteine remethylation and synthesis rates closely predicted plasma homocysteine levels (r = 0.85, P = 0.0015). Rates of homocysteine remethylation and serine synthesis were inversely correlated (r = -0.89, P < 0.001). These studies demonstrate distinctly different metabolic consequences of vitamin B-6 and folate deficiencies.
Resumo:
Vitamin B-6 deficiency causes mild elevation in plasma homocysteine, but the mechanism has not been clearly established. Serine is a substrate in one-carbon metabolism and in the transsulfuration pathway of homocysteine catabolism, and pyridoxal phosphate (PLP) plays a key role as coenzyme for serine hydroxymethyltransferase (SHMT) and enzymes of transsulfuration. In this study we used [H-2(3)]serine as a primary tracer to examine the remethylation pathway in adequately nourished and vitamin B-6-deficient rats pi and 0.1 mg pyridoxine (PN)/kg diet]. [H-2(3)]Leucine and [1-C-13]methionine were also used to examine turnover of protein and methionine pools, respectively, All tracers were injected intraperitoneally as a bolus dose, and then rats were killed (n = 4/time point) after 30, 60 and 120 min. Rats fed the low-PN diet had significantly lower growth and plasma and liver PLP concentrations, reduced liver SHMT activity, greater plasma and liver total homocysteine concentration, and reduced liver S-adenosylmethionine concentration. Hepatic and whole body protein turnover were reduced in vitamin B-6-deficient rats as evidenced by greater isotopic enrichment of [H-2(3)]leucine. Hepatic [H-2(2)]methionine production from [H-2(3)]serine via cytosolic SHMT and the remethylation pathway was reduced by 80.6% in vitamin B-6 deficiency. The deficiency did not significantly reduce hepatic cystathionine-beta-synthase activity, and in vivo hepatic transsulfuration flux shown by production of [H-2(3)]cysteine from the [H-2(3)]serine increased over twofold. In contrast, plasma appearance of [H-2(3)]cysteine was decreased by 89% in vitamin B-6 deficiency. The rate of hepatic homocysteine production shown by the ratio of [1-C-13]homocysteine/[1-C-13]methionine areas under enrichment vs. time curves was not affected by vitamin B-6 deficiency. Overall, these results indicate that vitamin B-6 deficiency substantially affects one-carbon metabolism by impairing both methyl group production for homocysteine remethylation and flux through whole-body transsulfuration.
Resumo:
The malaria parasite Plasmodium falciparum is able to synthesize de novo PLP (pyridoxal 5'-phosphate), the active form of vitamin B-6. In the present study, we have shown that the de novo synthesized PLP is used by the parasite to detoxify O-1(2) (singlet molecular oxygen), a highly destructive reactive oxygen species arising from haemoglobin digestion. The formation of O-1(2) and the response of the parasite were monitored by live-cell fluorescence microscopy, by transcription analysis and by determination of PLP levels in the parasite. Pull-down experiments of transgenic parasites overexpressing the vitamin B-6-biosynthetic enzymes PfPdx1 and PfPdx2 clearly demonstrated an interaction of the two proteins in vivo which results in an elevated PLP level from 12.5 mu M in wild-type parasites to 36.6 mu M in the PfPdx1/PfPdx2-overexpressing cells and thus to a higher tolerance towards O-1(2). In contrast, by applying the dominant-negative effect on the cellular level using inactive mutants of PfPdx1 and PfPdx2, P. falciparum becomes susceptible to O-1(2). Our results demonstrate clearly the crucial role of vitamin B-6 biosynthesis in the detoxification of O-1(2) in P falciparum. Besides the known role of PLP as a cofactor of many essential enzymes, this second important task of the vitamin B-6 de novo synthesis as antioxidant emphasizes the high potential of this pathway as a target of new anti-malarial drugs.
Resumo:
The ingress of water into poly(2-hydroxyethyl methacrylate), PHEMA, loaded with either one of two model drugs, vitamin B-12 or aspirin, was studied at 37 degreesC using three-dimensional NMR imaging. PHEMA was loaded with 5 and 10 wt % of the drugs. From the imaging profiles, it was observed that incorporation of vitamin B-12 into PHEMA resulted in enhanced crack formation on sorption of water and the crack healing behind the diffusion front was slower than for PHEMA without added drug. This was accounted for by the anti-plasticization of PHEMA by vitamin B-12. Crack formation was inhibited in the P-HEMA-aspirin systems because of the plasticizing effect of the aspirin on the PHEMA matrix. All of the polymers were found to absorb water according to an underlying Fickian diffusion mechanism. For PHEMA loaded with 5 wt % of aspirin or vitamin B-12, the best values of the water diffusion coefficients were both found to be 1.3 +/- 0.1 x 10(-11) m(2) s(-1) at 37 degreesC, while the values for the polymer loaded with 10 wt % of the drugs were slightly higher, 1.5 +/- 0.1 x 10(-11) m(2) s(-1).
Resumo:
The ingress of water and Kokubo simulated body fluid (SBF) into poly (2-hydroxyethyl methacrylate) (PHEMA), and its co-polymers with tetrahydrofurduryl methacrylate (THFMA), loaded with either one of two model drugs, vitamin 1312 or aspirin, was studied by mass uptake over the temperature range 298-318 K. The polymers were studied as cylinders and were loaded with either 5 wt% or 10 wt% of the drugs. From DSC studies it was observed that vitamin B-12 behaved as a physical cross-linker restricting chain segmental mobility, and so had a small anti-plasticisation effect on PHEMA and the co-polymers rich in HEMA, but almost no effect on the T-g of co-polymers rich in THFMA. On the other hand, aspirin exhibited a plasticising effect on PHEMA and the copolymers. All of the polymers were found to absorb water and SBF according to a Fickian diffusion mechanism. The polymers were all found to swell to a greater extent in SBF than in water, which was attributed to the presence of Tris buffer in the SBF. The sorptions of the two penetrants were found to follow Fickian kinetics in all cases and the diffusion coefficients at 310 K for SBF were found to be smaller than those for water, except for the polymers containing aspirin where the diffusion coefficients were higher than for the other systems. For example, for sorption into PHEMA the diffusion coefficient for water was 1.41 X 10(-11) m(2)/s and for SBF was 0.79 x 10-11 m(2)/s, but in the presence of 5 wt% aspirin the corresponding values were 1.27 x 10(-1)1 m(2)/s and 1.25 x 10(-11) m(2)/s, respectively. The corresponding values for PHEMA loaded with 5 wt% B-12 were 1.25 x 10(-11) m(2)/s and 0.74 x 10(-11) m(2)/s, respectively.
Resumo:
A model drug release study on the ingress of water and Kokubo simulated body fluid (SBF) into poly(2-hydroxyethyl methacrylate) (THFMA) and its copolymers with tetrahydrofurfuryl methacrylate (THFMA) loaded with vitamin B-12 was undertaken over the temperature range 298-318 K. The polymers were studied as cylinders and were loaded with either 5 or 10 wt-% of the drug. The drug release from the polymers was found to follow a Fickian diffusion mechanism in the early stages of the drug release, with higher normalized release rates at higher temperatures and higher drug loadings. The normalized release rates were also found to be higher for the SBF solution than for water. The copolymer composition was found to have a significant effect on the rate of release of the drug, with the rate falling rapidly between HEMA mole fractions of 1.0 and 0.8, but for lower mole fractions of HEMA the normalized release rate decreased more slowly. This behaviour followed the trend found for the changes in the equilibrium penetrant contents for the copolymers.
Resumo:
This paper deals with a batch service queue and multiple vacations. The system consists of a single server and a waiting room of finite capacity. Arrival of customers follows a Markovian arrival process (MAP). The server is unavailable for occasional intervals of time called vacations, and when it is available, customers are served in batches of maximum size ‘b’ with a minimum threshold value ‘a’. We obtain the queue length distributions at various epochs along with some key performance measures. Finally, some numerical results have been presented.
Resumo:
Levamisole, the imidazo2,1-b]thiazole derivative has been reported as a potential antitumor agent. In the present study, we synthesized, characterized and evaluated biological activity of its novel analogues with substitution in the aralkyl group and on imidazothiadiazole molecules with same chemical backbone but different side chains namely 2-aralkyl-6-(4'-fluorophenyl)-imidazo2,1-b]1,3,4]thiadiazoles (SCR1), 2-aralkyl-5-bromo-6-(4'-fluorophenyl)-imidazo2,1-b]1,3,4]-thiadiaz oles (SCR2), 2-aralkyl-5-formyl-6-(4'-fluorophenyl)-imidazo2,1-b]1,3,4]-thiadia zoles (SCR3) and 2-aralkyl-5-thiocyanato-6-(4'-fluorophenyl)-imidazo2,1-b]1,3,4]-th iadiazoles (SCR4) on leukemia cells. The cytotoxic studies showed that 3a, 4a, and 4c exhibited strong cytotoxicity while others had moderate cytotoxicity. Among these we chose 4a (IC50, 8 mu M) for understanding its mechanism of cytotoxicity. FACS analysis in conjunction with mitochondrial membrane potential and DNA fragmentation studies indicated that 4a induced apoptosis without cell cycle arrest suggesting that it could be used as a potential chemotherapeutic agent. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
The cytotoxic activity of a new series of 2-(4'-chlorobenzyl)-5,6-disubstituted imidazo2,1-b]1,3,4]wthiadiazoles against different human and murine cancer cell lines is reported. Among the tested compounds, two derivatives namely 2-(4-chlorobenzyl)-6-(2-oxo-2H-chromen-3-yl)imidazo2,1-1)]1,3,4]th iadiazole-5-carbaldehyde 4i and 2-(4-chlorobenzyl)-6-(2-oxo-2H-chromen-3-ypimidazo2,1-1)]1,3,4]thi adiazol-5-yl thiocyanate 5i emerged as the most potent against all the cell lines. To investigate the mechanism of action, we selected compounds 4i for cell cycle study, analysis of mitochondrial membrane potential and Annexin V-FITC flow cytometric analysis and DNA fragmentation assay. Results showed that 4i induced cytotoxicity by inducing apoptosis without arresting the cell cycle. (C) 2014 Elsevier Masson SAS. All rights reserved.
Resumo:
A series of 2,5,6-substituted imidazo2,1-b]1,3,4]thiadiazole derivatives have been prepared and were tested for antiproliferative activity on cancer cells at the National Cancer Institute. Results showed that molecules with a benzyl group at position 2, exhibited an increase in activity for the introduction of a formyl group at the 5 position. The compound 2-benzyl-5-formyl-6-(4-bromophenyl)imidazo 2,1-b]1,3,4]thiadiazole 22 has been chosen for understanding the mechanism of action by various molecular and cellular biology studies. Results obtained from cell cycle evaluation analysis, analysis of mitochondrial membrane potential and Annexin V-FITC by flow cytometric analysis, ROS production and expression of apoptotic and DNA-repair proteins suggested that compound 22 induced cytotoxicity by activating extrinsic pathway of apoptosis, however, without affecting cell cycle progression. (C) 2014 Elsevier Ltd. All rights reserved.