997 resultados para visual decoding


Relevância:

80.00% 80.00%

Publicador:

Resumo:

On the ALEA Study Tour to China, Beryl Exley and her roomie Kathryn O’Sullivan pondered over their first night dilemma whilst staying at a hotel in Beijing. They read the room service guide (in English) which advised against drinking the tap water and confirming the supply of one bottle of complementary water per guest per day. The room service guide listed ‘special’ bottled water was the equivalent of $AUS7 per bottle. However the dilemma was this: sitting on the shelf above the fridge were three different kinds of water-like bottles. Each had a different label, written mainly in Chinese characters. Not wanting to mistake the bottles, Beryl and Kathryn set about decoding the text of the three bottles in question.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brain decoding of functional Magnetic Resonance Imaging data is a pattern analysis task that links brain activity patterns to the experimental conditions. Classifiers predict the neural states from the spatial and temporal pattern of brain activity extracted from multiple voxels in the functional images in a certain period of time. The prediction results offer insight into the nature of neural representations and cognitive mechanisms and the classification accuracy determines our confidence in understanding the relationship between brain activity and stimuli. In this paper, we compared the efficacy of three machine learning algorithms: neural network, support vector machines, and conditional random field to decode the visual stimuli or neural cognitive states from functional Magnetic Resonance data. Leave-one-out cross validation was performed to quantify the generalization accuracy of each algorithm on unseen data. The results indicated support vector machine and conditional random field have comparable performance and the potential of the latter is worthy of further investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present thesis discusses relevant issues in education: 1) learning disabilities including the role of comorbidity in LDs, and 2) the use of research-based interventions. This thesis consists of a series of four studies (three articles), which deepens the knowledge of the field of special education. Intervention studies (N=242) aimed to examine whether training using a nonverbal auditory-visual matching computer program had a remedial effect in different learning disabilities, such as developmental dyslexia, Attention Deficit Disorder (ADD) and Specific Language Impairment (SLI). These studies were conducted in both Finland and Sweden. The intervention’s non-verbal character made an international perspective possible. The results of the intervention studies confirmed, that the auditory-visual matching computer program, called Audilex had positive intervention effects. In Study I of children with developmental dyslexia there were also improvements in reading skills, specifically in reading nonsense words and reading speed. These improvements in tasks, which are thought to rely on phonological processing, suggest that such reading difficulties in dyslexia may stem in part from more basic perceptual difficulties, including those required to manage the visual and auditory components of the decoding task. In Study II the intervention had a positive effect on children with dyslexia; older students with dyslexia and surprisingly, students with ADD also benefited from this intervention. In conclusion, the role of comorbidity was apparent. An intervention effect was evident also in students’ school behavior. Study III showed that children with SLI experience difficulties very similar to those of children with dyslexia in auditory-visual matching. Children with language-based learning disabilities, such as dyslexia and SLI benefited from the auditory-visual matching intervention. Also comorbidity was evident among these children; in addition to formal diagnoses, comorbidity was explored with an assessment inventory, which was developed for this thesis. Interestingly, an overview of the data of this thesis shows positive intervention effects in all studies despite learning disability, language, gender or age. These findings have been described by a concept inter-modal transpose. Self-evidently these issues need further studies. In learning disabilities the aim in the future will also be to identify individuals at risk rather than by deficit; this aim can be achieved by using research-based interventions, intensified support in general education and inclusive special education. Keywords: learning disabilities, developmental dyslexia, attention deficit disorder, specific language impairment, language-based learning disabilities, comorbidity, auditory-visual matching, research-based interventions, inter-modal transpose

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Both embodied and symbolic accounts of conceptual organization would predict partial sharing and partial differentiation between the neural activations seen for concepts activated via different stimulus modalities. But cross-participant and cross-session variability in BOLD activity patterns makes analyses of such patterns with MVPA methods challenging. Here, we examine the effect of cross-modal and individual variation on the machine learning analysis of fMRI data recorded during a word property generation task. We present the same set of living and non-living concepts (land-mammals, or work tools) to a cohort of Japanese participants in two sessions: the first using auditory presentation of spoken words; the second using visual presentation of words written in Japanese characters. Classification accuracies confirmed that these semantic categories could be detected in single trials, with within-session predictive accuracies of 80-90%. However cross-session prediction (learning from auditory-task data to classify data from the written-word-task, or vice versa) suffered from a performance penalty, achieving 65-75% (still individually significant at p « 0.05). We carried out several follow-on analyses to investigate the reason for this shortfall, concluding that distributional differences in neither time nor space alone could account for it. Rather, combined spatio-temporal patterns of activity need to be identified for successful cross-session learning, and this suggests that feature selection strategies could be modified to take advantage of this.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this functional magnetic resonance imaging (fMRI) study was to identify human brain areas that are sensitive to the direction of auditory motion. Such directional sensitivity was assessed in a hypothesis-free manner by analyzing fMRI response patterns across the entire brain volume using a spherical-searchlight approach. In addition, we assessed directional sensitivity in three predefined brain areas that have been associated with auditory motion perception in previous neuroimaging studies. These were the primary auditory cortex, the planum temporale and the visual motion complex (hMT/V5+). Our whole-brain analysis revealed that the direction of sound-source movement could be decoded from fMRI response patterns in the right auditory cortex and in a high-level visual area located in the right lateral occipital cortex. Our region-of-interest-based analysis showed that the decoding of the direction of auditory motion was most reliable with activation patterns of the left and right planum temporale. Auditory motion direction could not be decoded from activation patterns in hMT/V5+. These findings provide further evidence for the planum temporale playing a central role in supporting auditory motion perception. In addition, our findings suggest a cross-modal transfer of directional information to high-level visual cortex in healthy humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a framework for the analysis of the decoding delay in multiview video coding (MVC). We show that in real-time applications, an accurate estimation of the decoding delay is essential to achieve a minimum communication latency. As opposed to single-view codecs, the complexity of the multiview prediction structure and the parallel decoding of several views requires a systematic analysis of this decoding delay, which we solve using graph theory and a model of the decoder hardware architecture. Our framework assumes a decoder implementation in general purpose multi-core processors with multi-threading capabilities. For this hardware model, we show that frame processing times depend on the computational load of the decoder and we provide an iterative algorithm to compute jointly frame processing times and decoding delay. Finally, we show that decoding delay analysis can be applied to design decoders with the objective of minimizing the communication latency of the MVC system.