805 resultados para video summarization


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a hierarchical video structure summarization approach using Laplacian Eigenmap is proposed, where a small set of reference frames is selected from the video sequence to form a reference subspace to measure the dissimilarity between two arbitrary frames. In the proposed summarization scheme, the shot-level key frames are first detected from the continuity of inter-frame dissimilarity, and the sub-shot level and scene level representative frames are then summarized by using K-mean clustering. The experiment is carried on both test videos and movies, and the results show that in comparison with a similar approach using latent semantic analysis, the proposed approach using Laplacian Eigenmap can achieve a better recall rate in keyframe detection, and gives an efficient hierarchical summarization at sub shot, shot and scene levels subsequently.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces the Optimum-Path Forest (OPF) classifier for static video summarization, being its results comparable to the ones obtained by some state-of-the-art video summarization techniques. The experimental section has been conducted using several image descriptors in two public datasets, followed by an analysis of OPF robustness regarding one ad-hoc parameter. Future works are guided to improve OPF effectiveness on each distinct video category.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

视频摘要作为一种视频内容的简要表示,能够有效地增强用户浏览和组织视频的效率。提出了一种基于草图的视频摘要生成方法。与以往的静态视频摘要方法不同,该方法结合视频内容分析,利用草图在表达上的简洁性和抽象性,对视频中的主要内容进行表达。首先通过视频分析获取视频中的语义特征并提取关键帧,然后通过交互式的方法从关键帧中生成草图,最后进行摘要布局生成完整的视频摘要。实验结果表明,该方法能够有效突出视频的主要对象和主要事件,并具有较高的用户满意度。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We introduce a new method to describe, in a single image, changes in shape over time. We acquire both range and image information with a stationary stereo camera. From the pictures taken, we display a composite image consisting of the image data from the surface closest to the camera at every pixel. This reveals the 3-d relationships over time by easy-to-interpret occlusion relationships in the composite image. We call the composite a shape-time photograph. Small errors in depth measurements cause artifacts in the shape-time images. We correct most of these using a Markov network to estimate the most probable front surface, taking into account the depth measurements, their uncertainties, and layer continuity assumptions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To detect and annotate the key events of live sports videos, we need to tackle the semantic gaps of audio-visual information. Previous work has successfully extracted semantic from the time-stamped web match reports, which are synchronized with the video contents. However, web and social media articles with no time-stamps have not been fully leveraged, despite they are increasingly used to complement the coverage of major sporting tournaments. This paper aims to address this limitation using a novel multimodal summarization framework that is based on sentiment analysis and players' popularity. It uses audiovisual contents, web articles, blogs, and commentators' speech to automatically annotate and visualize the key events and key players in a sports tournament coverage. The experimental results demonstrate that the automatically generated video summaries are aligned with the events identified from the official website match reports.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With a significant increment of the number of digital cameras used for various purposes, there is a demanding call for advanced video analysis techniques that can be used to systematically interpret and understand the semantics of video contents, which have been recorded in security surveillance, intelligent transportation, health care, video retrieving and summarization. Understanding and interpreting human behaviours based on video analysis have observed competitive challenges due to non-rigid human motion, self and mutual occlusions, and changes of lighting conditions. To solve these problems, advanced image and signal processing technologies such as neural network, fuzzy logic, probabilistic estimation theory and statistical learning have been overwhelmingly investigated.

Relevância:

20.00% 20.00%

Publicador: