995 resultados para vanishing discount approach
Resumo:
This work is concerned with the existence of an optimal control strategy for the long-run average continuous control problem of piecewise-deterministic Markov processes (PDMPs). In Costa and Dufour (2008), sufficient conditions were derived to ensure the existence of an optimal control by using the vanishing discount approach. These conditions were mainly expressed in terms of the relative difference of the alpha-discount value functions. The main goal of this paper is to derive tractable conditions directly related to the primitive data of the PDMP to ensure the existence of an optimal control. The present work can be seen as a continuation of the results derived in Costa and Dufour (2008). Our main assumptions are written in terms of some integro-differential inequalities related to the so-called expected growth condition, and geometric convergence of the post-jump location kernel associated to the PDMP. An example based on the capacity expansion problem is presented, illustrating the possible applications of the results developed in the paper.
Resumo:
This paper deals with the long run average continuous control problem of piecewise deterministic Markov processes (PDMPs) taking values in a general Borel space and with compact action space depending on the state variable. The control variable acts on the jump rate and transition measure of the PDMP, and the running and boundary costs are assumed to be positive but not necessarily bounded. Our first main result is to obtain an optimality equation for the long run average cost in terms of a discrete-time optimality equation related to the embedded Markov chain given by the postjump location of the PDMP. Our second main result guarantees the existence of a feedback measurable selector for the discrete-time optimality equation by establishing a connection between this equation and an integro-differential equation. Our final main result is to obtain some sufficient conditions for the existence of a solution for a discrete-time optimality inequality and an ordinary optimal feedback control for the long run average cost using the so-called vanishing discount approach. Two examples are presented illustrating the possible applications of the results developed in the paper.
Resumo:
This paper studies the average control problem of discrete-time Markov Decision Processes (MDPs for short) with general state space, Feller transition probabilities, and possibly non-compact control constraint sets A(x). Two hypotheses are considered: either the cost function c is strictly unbounded or the multifunctions A(r)(x) = {a is an element of A(x) : c(x, a) <= r} are upper-semicontinuous and compact-valued for each real r. For these two cases we provide new results for the existence of a solution to the average-cost optimality equality and inequality using the vanishing discount approach. We also study the convergence of the policy iteration approach under these conditions. It should be pointed out that we do not make any assumptions regarding the convergence and the continuity of the limit function generated by the sequence of relative difference of the alpha-discounted value functions and the Poisson equations as often encountered in the literature. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
This work focuses on the appraisal of public and environmental projects and, more specifically, on the calculation of the social discount rate (SDR) for this kind of very long-term investment projects. As a rule, we can state that the instantaneous discount rate must be equal to the hazard rate of the public good or to the mortality rate of the population that the project is intended to. The hazard can be due to technical failures of the system, but, in this paper, we are going to consider different independent variables that can cause the hazard. That is, we are going to consider a multivariate hazard rate. In our empirical application, the Spanish forest surface will be the system and the forest fire will be the fail that can be caused by several factors. The aim of this work is to integrate the different variables that produce the fail in the calculation of the SDR from a multivariate hazard rate approach.
Spanning tests in return and stochastic discount factor mean-variance frontiers: A unifying approach
Resumo:
We propose new spanning tests that assess if the initial and additional assets share theeconomically meaningful cost and mean representing portfolios. We prove their asymptoticequivalence to existing tests under local alternatives. We also show that unlike two-step oriterated procedures, single-step methods such as continuously updated GMM yield numericallyidentical overidentifyng restrictions tests, so there is arguably a single spanning test.To prove these results, we extend optimal GMM inference to deal with singularities in thelong run second moment matrix of the influence functions. Finally, we test for spanningusing size and book-to-market sorted US stock portfolios.
Resumo:
Using the Pricing Equation, in a panel-data framework, we construct a novel consistent estimator of the stochastic discount factor (SDF) mimicking portfolio which relies on the fact that its logarithm is the ìcommon featureîin every asset return of the economy. Our estimator is a simple function of asset returns and does not depend on any parametric function representing preferences, making it suitable for testing di§erent preference speciÖcations or investigating intertemporal substitution puzzles.
Resumo:
Using the Pricing Equation in a panel-data framework, we construct a novel consistent estimator of the stochastic discount factor (SDF) which relies on the fact that its logarithm is the "common feature" in every asset return of the economy. Our estimator is a simple function of asset returns and does not depend on any parametric function representing preferences. The techniques discussed in this paper were applied to two relevant issues in macroeconomics and finance: the first asks what type of parametric preference-representation could be validated by asset-return data, and the second asks whether or not our SDF estimator can price returns in an out-of-sample forecasting exercise. In formal testing, we cannot reject standard preference specifications used in the macro/finance literature. Estimates of the relative risk-aversion coefficient are between 1 and 2, and statistically equal to unity. We also show that our SDF proxy can price reasonably well the returns of stocks with a higher capitalization level, whereas it shows some difficulty in pricing stocks with a lower level of capitalization.
Resumo:
Two main approaches are commonly used to empirically evaluate linear factor pricingmodels: regression and SDF methods, with centred and uncentred versions of the latter.We show that unlike standard two-step or iterated GMM procedures, single-step estimatorssuch as continuously updated GMM yield numerically identical values for prices of risk,pricing errors, Jensen s alphas and overidentifying restrictions tests irrespective of the modelvalidity. Therefore, there is arguably a single approach regardless of the factors being tradedor not, or the use of excess or gross returns. We illustrate our results by revisiting Lustigand Verdelhan s (2007) empirical analysis of currency returns.
Resumo:
The traditional economic approach for appraising the costs and benefits of construction project Net Present Values involves the calculation of net returns for each investment option under different discount rates. An alternative approach consists of multiple-project discount rates based on risk modelling. The example of a portfolio of microgeneration renewable energy technology (MRET) is presented to demonstrate that risks and future available budget for re-investment can be taken into account when setting discount rates for construction project specifications in presence of uncertainty. A formal demonstration is carried out through a reversed intertemporal approach of applied general equilibrium. It is demonstrated that risk and the estimated available budget for future re-investment can be included in the simultaneous assessment of the costs and benefits of multiple projects.
Resumo:
We aim to provide a review of the stochastic discount factor bounds usually applied to diagnose asset pricing models. In particular, we mainly discuss the bounds used to analyze the disaster model of Barro (2006). Our attention is focused in this disaster model since the stochastic discount factor bounds that are applied to study the performance of disaster models usually consider the approach of Barro (2006). We first present the entropy bounds that provide a diagnosis of the analyzed disaster model which are the methods of Almeida and Garcia (2012, 2016); Ghosh et al. (2016). Then, we discuss how their results according to the disaster model are related to each other and also present the findings of other methodologies that are similar to these bounds but provide different evidence about the performance of the framework developed by Barro (2006).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We investigate the pricing discount for limited liquidity. Unlike previous studies that have examined the relation between histroical returns and liquidity, ours looks directly at current stock prices. This approach requires less data and yields up-to-date information about limited liquidity discounts. We analyze data from the Swiss exchange and the Nasdaq during 1995-2001, and find a statistically and economically significant price-liquidity relation in both markets. We test the robustness of that relation with a procedure that does not rely on specific distributional assumptions. Our findings are unaffected. Accordingly, the discount suffered by the least liquid securities is about 30%.
Resumo:
We describe a user assisted technique for 3D stereo conversion from 2D images. Our approach exploits the geometric structure of perspective images including vanishing points. We allow a user to indicate lines, planes, and vanishing points in the input image, and directly employ these as constraints in an image warping framework to produce a stereo pair. By sidestepping explicit construction of a depth map, our approach is applicable to more general scenes and avoids potential artifacts of depth-image-based rendering. Our method is most suitable for scenes with large scale structures such as buildings.