922 resultados para vanilloid receptor 1


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inflammatory proteases (mast cell tryptase and trypsins) cleave protease-activated receptor 2 (PAR2) on spinal afferent neurons and cause persistent inflammation and hyperalgesia by unknown mechanisms. We determined whether transient receptor potential vanilloid receptor 1 (TRPV1), a cation channel activated by capsaicin, protons, and noxious heat, mediates PAR2-induced hyperalgesia. PAR2 was coexpressed with TRPV1 in small- to medium-diameter neurons of the dorsal root ganglia (DRG), as determined by immunofluorescence. PAR2 agonists increased intracellular [Ca2+] ([Ca2+]i) in these neurons in culture, and PAR2-responsive neurons also responded to the TRPV1 agonist capsaicin, confirming coexpression of PAR2 and TRPV1. PAR2 agonists potentiated capsaicin-induced increases in [Ca2+]i in TRPV1-transfected human embryonic kidney (HEK) cells and DRG neurons and potentiated capsaicin-induced currents in DRG neurons. Inhibitors of phospholipase C and protein kinase C (PKC) suppressed PAR2-induced sensitization of TRPV1-mediated changes in [Ca2+]i and TRPV1 currents. Activation of PAR2 or PKC induced phosphorylation of TRPV1 in HEK cells, suggesting a direct regulation of the channel. Intraplantar injection of a PAR2 agonist caused persistent thermal hyperalgesia that was prevented by antagonism or deletion of TRPV1. Coinjection of nonhyperalgesic doses of PAR2 agonist and capsaicin induced hyperalgesia that was inhibited by deletion of TRPV1 or antagonism of PKC. PAR2 activation also potentiated capsaicin-induced release of substance P and calcitonin gene-related peptide from superfused segments of the dorsal horn of the spinal cord, where they mediate hyperalgesia. We have identified a novel mechanism by which proteases that activate PAR2 sensitize TRPV1 through PKC. Antagonism of PAR2, TRPV1, or PKC may abrogate protease-induced thermal hyperalgesia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

(1) Stimulation of the vanilloid receptor-1 (TRPV1) results in the activation of nociceptive and neurogenic inflammatory responses. Poor specificity and potency of TRPV1 antagonists has, however, limited the clarification of the physiological role of TRPV1. (2) Recently, iodo-resiniferatoxin (I-RTX) has been reported to bind as a high affinity antagonist at the native and heterologously expressed rat TRPV1. Here we have studied the ability of I-RTX to block a series of TRPV1 mediated nociceptive and neurogenic inflammatory responses in different species (including transfected human TRPV1). (3) We have demonstrated that I-RTX inhibited capsaicin-induced mobilization of intracellular Ca(2+) in rat trigeminal neurons (IC(50) 0.87 nM) and in HEK293 cells transfected with the human TRPV1 (IC(50) 0.071 nM). (4) Furthermore, I-RTX significantly inhibited both capsaicin-induced CGRP release from slices of rat dorsal spinal cord (IC(50) 0.27 nM) and contraction of isolated guinea-pig and rat urinary bladder (pK(B) of 10.68 and 9.63, respectively), whilst I-RTX failed to alter the response to high KCl or SP. (5) Finally, in vivo I-RTX significantly inhibited acetic acid-induced writhing in mice (ED(50) 0.42 micro mol kg(-1)) and plasma extravasation in mouse urinary bladder (ED(50) 0.41 micro mol kg(-1)). (6) In in vitro and in vivo TRPV1 activated responses I-RTX was approximately 3 log units and approximately 20 times more potent than capsazepine, respectively. This high affinity antagonist, I-RTX, may be an important tool for future studies in pain and neurogenic inflammatory models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vanilloid receptor-1 (VR1) is a heat-gated ion channel that is responsible for the burning sensation elicited by capsaicin. A similar sensation is reported by patients with esophagitis when they consume alcoholic beverages or are administered alcohol by injection as a medical treatment. We report here that ethanol activates primary sensory neurons, resulting in neuropeptide release or plasma extravasation in the esophagus, spinal cord or skin. Sensory neurons from trigeminal or dorsal root ganglia as well as VR1-expressing HEK293 cells responded to ethanol in a concentration-dependent and capsazepine-sensitive fashion. Ethanol potentiated the response of VR1 to capsaicin, protons and heat and lowered the threshold for heat activation of VR1 from approximately 42 degrees C to approximately 34 degrees C. This provides a likely mechanistic explanation for the ethanol-induced sensory responses that occur at body temperature and for the sensitivity of inflamed tissues to ethanol, such as might be found in esophagitis, neuralgia or wounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An involvement of the transient receptor potential vanilloid (TRPV) 1 channel in the regulation of body temperature (T b) has not been established decisively. To provide decisive evidence for such an involvement and determine its mechanisms were the aims of the present study. We synthesized a new TRPV1 antagonist, AMG0347 [(E)-N-(7-hydroxy-5,6,7,8-tetrahydronaphthalen-1- yl)-3-(2-(piperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)acrylamide], and characterized it in vitro. We then found that this drug is the most potent TRPV1 antagonist known to increase T b of rats and mice and showed (by using knock-out mice) that the entire hyperthermic effect of AMG0347 is TRPV1 dependent. AMG0347-induced hyperthermia was brought about by one or both of the two major autonomic cold-defense effector mechanisms (tail-skin vasoconstriction and/or thermogenesis), but it did not involve warmth-seeking behavior. The magnitude of the hyperthermic response depended on neither T b nor tail-skin temperature at the time of AMG0347 administration, thus indicating that AMG0347-induced hyperthermia results from blockade of tonic TRPV1 activation by nonthermal factors. AMG0347 was no more effective in causing hyperthermia when administered into the brain (intracerebroventricularly) or spinal cord (intrathecally) than when given systemically (intravenously), which indicates a peripheral site of action. We then established that localized intra-abdominal desensitization of TRPV1 channels with intraperitoneal resiniferatoxin blocks the T b response to systemic AMG0347; the extent of desensitization was determined by using a comprehensive battery of functional tests. We conclude that tonic activation of TRPV1 channels in the abdominal viscera by yet unidentified nonthermal factors inhibits skin vasoconstriction and thermogenesis, thus having a suppressive effect on T b. Copyright © 2007 Society for Neuroscience.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The midbrain dorsal periaqueductal gray (dPAG) has an important role in orchestrating anxiety-and panic-related responses. Given the cellular and behavioral evidence suggesting opposite functions for cannabinoid type 1 receptor (CB1) and transient receptor potential vanilloid type-1 channel (TRPV1), we hypothesized that they could differentially influence panic-like reactions induced by electrical stimulation of the dPAG. Drugs were injected locally and the expression of CB1 and TRPV1 in this structure was assessed by immunofluorescence and confocal microscopy. The CB1-selective agonist, ACEA (0.01, 0.05 and 0.5 pmol) increased the threshold for the induction of panic-like responses solely at the intermediary dose, an effect prevented by the CB1-selective antagonist, AM251 (75 pmol). Panicolytic-like effects of ACEA at the higher dose were unmasked by pre-treatment with the TRPV1 antagonist capsazepine (0.1 nmol). Similarly to ACEA, capsazepine (1 and 10 nmol) raised the threshold for triggering panic-like reactions, an effect mimicked by another TRPV1 antagonist, SB366791 (1 nmol). Remarkably, the effects of both capsazepine and SB366791 were prevented by AM251 (75 pmol). These pharmacological data suggest that a common endogenous agonist may have opposite functions at a given synapse. Supporting this view, we observed that several neurons in the dPAG co-expressed CB1 and TRPV1. Thus, the present work provides evidence that an endogenous substance, possibly anandamide, may exert both panicolytic and panicogenic effects via its actions at CB1 receptors and TRPV1 channels, respectively. This tripartite set-point system might be exploited for the pharmacotherapy of panic attacks and anxiety-related disorders. Neuropsychopharmacology (2012) 37, 478-486; doi:10.1038/npp.2011.207; published online 21 September 2011

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background We have previously reported an association between the estrogen receptor 1 (ESR1) gene exon 8 G594A polymorphism and migraine susceptibility in two independent Australian cohorts. In this paper we report results of analysis of two further single nucleotide polymorphisms (SNPs) in the ESR1 gene in the same study group, the T/C Pvu II SNP in intron 1 and the C325G SNP in exon 4, as well as results of linkage disequilibrium (LD) analysis on these markers. Methods We investigated these variants by case-control association analysis in a cohort of 240 migraineurs and 240 matched controls. The SNPs were genotyped using specific restriction enzyme assays. Results were analysed using contingency table methods incorporating the chi-squared statistic. LD results are presented as D' statistics with associated P values. Results We found no evidence for association of the Pvu II T/C polymorphism and the C325G polymorphism and migraine susceptibility and no evidence for LD between these two SNPs and the previously implicated exon 8 G594A marker. Conclusion We have found no role for the polymorphisms in intron 1 and exon 4 with migraine susceptibility. To further investigate our previously implicated exon 8 marker, we suggest the need for studies with a high density of polymorphisms be undertaken, with particular focus on markers in LD with the exon 8 marker.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Migraine is a painful and debilitating disorder with a significant genetic component. Steroid hormones, in particular estrogen, have long been considered to play a role in migraine, as variations in hormone levels are associated with migraine onset in many sufferers of the disorder. Steroid hormones mediate their activity via hormone receptors, which have a wide tissue distribution. Estrogen receptors have been localized to the brain in regions considered to be involved in migraine pathogenesis. Hence it is possible that genetic variation in the estrogen receptor gene may play a role in migraine susceptibility. This study thus examined the estrogen receptor 1 (ESRα) gene for a potential role in migraine pathogenesis and susceptibility. A population-based cohort of 224 migraine sufferers and 224 matched controls were genotyped for the G594A polymorphism located in exon 8 of the ESR1 gene. Statistical analysis indicated a significant difference between migraineurs and non-migraineurs in both the allele frequencies (P=0.003) and genotype distributions (P=0.008) in this sample. An independent follow-up study was then undertaken using this marker in an additional population-based cohort of 260 migraine sufferers and 260 matched controls. This resulted in a significant association between the two groups with regard to allele frequencies (P=8×10−6) and genotype distributions (P=4×10−5). Our findings support the hypothesis that genetic variation in hormone receptors, in particular the ESR1 gene, may play a role in migraine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction Sphingosine-1-phosphate receptor 1 (S1P1) is crucial for regulation of immunity and bone metabolism. This study aimed to investigate the expression of S1P1 in rat periapical lesions and its relationship with receptor activator of nuclear factor kappa B ligand (RANKL) and regulatory T (Treg) cells. Methods Periapical lesions were induced by pulp exposure in the first lower molars of 55 Wistar rats. Thirty rats were killed on days 0, 7, 14, 21, 28, and 35, and their mandibles were harvested for x-ray imaging, micro–computed tomography scanning, histologic observation, immunohistochemistry, enzyme histochemistry, and double immunofluorescence analysis. The remaining 25 rats were killed on days 0, 14, 21, 28, and 35, and mandibles were harvested for flow cytometry. Results The volume and area of the periapical lesions increased from day 0 to day 21 and then remained comparably stable after day 28. S1P1-positive cells were observed in the inflammatory periapical regions; the number of S1P1-positive cells peaked at day 14 and then decreased from day 21 to day 35. The distribution of S1P1-positive cells was positively correlated with the dynamics of RANKL-positive cells but was negatively correlated with that of Treg cells. Conclusions S1P1 expression was differentially correlated with RANKL and Treg cell infiltration in the periapical lesions and is therefore a contributing factor to the pathogenesis of such lesions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pre-eclampsia is a pregnancy complication that affects about 5% of all pregnancies. It is known to be associated with alterations in angiogenesis -related factors, such as vascular endothelial growth factor (VEGF). An excess of antiangiogenic substances, especially the soluble receptor-1 of VEGF (sVEGFR-1), has been observed in maternal circulation after the onset of the disease, probably reflecting their increased placental production. Smoking reduces circulating concentrations of sVEGFR-1 in non-pregnant women, and in pregnant women it reduces the risk of pre-eclampsia. Soluble VEGFR-1 acts as a natural antagonist of VEGF and placental growth factor (PlGF) in human circulation, holding a promise for potential therapeutic use. In fact, it has been used as a model to generate a fusion protein, VEGF Trap , which has been found effective in anti-angiogenic treatment of certain tumors and ocular diseases. In the present study, we evaluated the potential use of maternal serum sVEGFR-1, Angiopoietin-2 (Ang-2) and endostatin, three central anti-angiogenic markers, in early prediction of subsequent pre-eclampsia. We also studied whether smoking affects circulating sVEGFR-1 concentrations in pregnant women or their first trimester placental secretion and expression in vitro. Last, in order to allow future discussion on the potential therapy based on sVEGFR-1, we determined the biological half-life of endogenous sVEGFR-1 in human circulation, and measured the concomitant changes in free VEGF concentrations. Blood or placental samples were collected from a total of 268 pregnant women between the years 2001 2007 in Helsinki University Central Hospital for the purposes above. The biomarkers were measured using commercially available enzyme-linked immunosorbent assays (ELISA). For the analyses of sVEGFR-1, Ang-2 and endostatin, a total of 3 240 pregnant women in the Helsinki area were admitted to blood sample collection during two routine ultrasoundscreening visits at 13.7 ± 0.5 (mean ± SD) and 19.2 ± 0.6 weeks of gestation. Of them, 49 women later developing pre-eclampsia were included in the study. Their disease was further classified as mild in 29 and severe in 20 patients. Isolated early-onset intrauterine growth retardation (IUGR) was diagnosed in 16 women with otherwise normal medical histories and uncomplicated pregnancies. Fifty-nine women remaining normotensive, non-proteinuric and finally giving birth to normal-weight infants were picked to serve as the control population of the study. Maternal serum concentrations of Ang-2, endostatin and sVEGFR-1, were increased already at 16 20 weeks of pregnancy, about 13 weeks before the clinical manifestation of preeclampsia. In addition, these biomarkers could be used to identify women at risk with a moderate precision. However, larger patient series are needed to determine whether these markers could be applied for clinical use to predict preeclampsia. Intrauterine growth retardation (IUGR), especially if noted at early stages of pregnancy and not secondary to any other pregnancy complication, has been suggested to be a form of preeclampsia compromising only the placental sufficiency and the fetus, but not affecting the maternal endothelium. In fact, IUGR and preeclampsia have been proposed to share a common vascular etiology in which factors regulating early placental angiogenesis are likely to play a central role. Thus, these factors have been suggested to be involved in the pathogenesis of IUGR. However, circulating sVEGFR-1, Ang-2 and endostatin concentrations were unaffected by subsequent IUGR at early second trimester. Furthermore, smoking was not associated with alterations in maternal circulating sVEGFR-1 or its placental production. The elimination of endogenous sVEGFR-1 after pregnancy was calculated from serial samples of eight pregnant women undergoing elective Caesarean section. As typical for proteins in human compartments, the elimination of sVEGFR-1 was biphasic, containing a rapid halflife of 3.4 h and a slow one of 29 h. The decline in sVEGFR-1 concentrations after mid-trimester legal termination of pregnancy was accompanied with a simultaneous increase in the serum levels of free VEGF so that within a few days after pregnancy VEGF dominated in the maternal circulation. Our study provides novel information on the kinetics of endogenous sVEGFR-1, which serves as a potential tool in the development of new strategies against diseases associated with angiogenic imbalance and alterations in VEGF signaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vomeronasal receptor 1 (V1R) are believed to be pheromone receptors in rodents. Here we used computational methods to identify 95 and 62 new putative V1R genes from the draft rat and mouse genome sequence, respectively. The rat V1R repertoire consists of 11 subfamilies, 10 of which are shared with the mouse, while rat appears to lack the H and I subfamilies found in mouse and possesses one unique subfamily (M). The estimations of the relative divergence times suggest that many subfamilies originated after the split of rodents and primates. The analysis also reveals that these clusters underwent an expansion very close to the split of mouse and rat. In addition, maximum likelihood analysis showed that the nonsynonymous and synonymous rate ratio for most of these clusters was much higher than one, suggesting the role of positive selection in the diversification of these duplicated V1R genes. Because V1R are thought to mediate the process of signal transduction in response to pheromone detection, we speculate that the V1R genes have evolved under positive Darwinian selection to maintain the ability to discriminate between large and complex pheromonal mixtures.